EnglishFrenchSpanish

OnWorks favicon

t.rast.listgrass - Online in the Cloud

Run t.rast.listgrass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command t.rast.listgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


t.rast.list - Lists registered maps of a space time raster dataset.

KEYWORDS


temporal, map management, raster, list, time

SYNOPSIS


t.rast.list
t.rast.list --help
t.rast.list [-s] input=name [order=string[,string,...]] [columns=string[,string,...]]
[where=sql_query] [method=string] [granule=string] [separator=character] [--help]
[--verbose] [--quiet] [--ui]

Flags:
-s
Suppress printing of column names

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of the input space time raster dataset

order=string[,string,...]
Sort the space time dataset by category
Options: id, name, creator, mapset, temporal_type, creation_time, start_time,
end_time, north, south, west, east, nsres, ewres, cols, rows, number_of_cells, min,
max
Default: start_time

columns=string[,string,...]
Columns to be printed to stdout
Options: id, name, creator, mapset, temporal_type, creation_time, start_time,
end_time, north, south, west, east, nsres, ewres, cols, rows, number_of_cells, min,
max
Default: name,mapset,start_time,end_time

where=sql_query
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS
framework
Example: start_time > ’2001-01-01 12:30:00’

method=string
Method used for data listing
Options: cols, comma, delta, deltagaps, gran
Default: cols

granule=string
The granule to be used for listing. The granule must be specified as string eg.:
absolute time "1 months" or relative time "1"

separator=character
Field separator character between the output columns
Special characters: pipe, comma, space, tab, newline
Default: pipe

DESCRIPTION


List time stamped raster map layers that are registered in a space time raster dataset.
t.rast.list provides several options to list map layers and their metadata. Listing of map
layer can be ordered by metadata, metadata columns can be specified and SQL where
conditions can be provided to select a map layer subset of the input space time raster
dataset. Most of the raster map specific metadat is available for column selection,
sorting and SQL where statements. Using the method option allows the specification of
different methods to list map layers. Method col is the default option and sensitive to
the column,order and where options. It will simply print user specified metadata columns
of one map layer per line. The comma method will list the map layer as comma separated
list that can be used as input for spatial modules.

To print interval length in days and distance from the begin use method delta. Method
deltagap will additionally print temporal gaps between map layer. The gran method allows
the listing of map layer sampled by a user defined granule. As default the granularity of
the space time raster dataset is used for sampling. The output column separator can be
specified with the separator option.

EXAMPLES


This example shows several options that are available for map layers listing.

Default query
The following command is the default one, returning standard information like name,
mapset, start_time, end_time of each map in the space time dataset

t.rast.list tempmean_monthly
name|mapset|start_time|end_time
2009_01_tempmean|climate_2000_2012|2009-01-01 00:00:00|2009-02-01 00:00:00
2009_02_tempmean|climate_2000_2012|2009-02-01 00:00:00|2009-03-01 00:00:00
....
2012_11_tempmean|climate_2000_2012|2012-11-01 00:00:00|2012-12-01 00:00:00
2012_12_tempmean|climate_2000_2012|2012-12-01 00:00:00|2013-01-01 00:00:00

Add more info
The following command let the user to choose the columns to show

t.rast.list tempmean_monthly columns=name,start_time,min,max
name|start_time|min|max
2009_01_tempmean|2009-01-01 00:00:00|-3.380823|7.426054
2009_02_tempmean|2009-02-01 00:00:00|-1.820261|8.006386
...
2009_01_tempmean|2009-01-01 00:00:00|-3.380823|7.426054
2009_02_tempmean|2009-02-01 00:00:00|-1.820261|8.006386

Filtering the result by value
In this example the result is filtered showing only the maps with max value major than 24

t.rast.list tempmean_monthly columns=name,start_time,min,max where="max > 24"
name|start_time|min|max
2009_06_tempmean|2009-06-01 00:00:00|15.962669|25.819681
2009_07_tempmean|2009-07-01 00:00:00|15.32852|26.103664
2009_08_tempmean|2009-08-01 00:00:00|16.37995|27.293282
....
2012_06_tempmean|2012-06-01 00:00:00|14.929379|24.000651
2012_07_tempmean|2012-07-01 00:00:00|18.455802|28.794653
2012_08_tempmean|2012-08-01 00:00:00|15.718526|26.151115

Filtering the result by time range
In this example the result is filtered showing only the maps which fall into a specified
time range (from .. to):

t.rast.list tempmean_monthly columns=name,start_time,min,max \
where="start_time > ’2009-06-01 00:00:00’ and start_time < ’2012-08-01 00:00:00’"
name|start_time|min|max
2009_06_tempmean|2009-06-01 00:00:00|15.962669|25.819681
2009_07_tempmean|2009-07-01 00:00:00|15.32852|26.103664
2009_08_tempmean|2009-08-01 00:00:00|16.37995|27.293282
....
2012_06_tempmean|2012-06-01 00:00:00|14.929379|24.000651
2012_07_tempmean|2012-07-01 00:00:00|18.455802|28.794653
2012_08_tempmean|2012-08-01 00:00:00|15.718526|26.151115

Filtering the result by selecting recurring timestamps
In this example the result is filtered showing only the maps which fall into a specified
recurring time range (here one month per year):
t.rast.list Tseasonal_fieldata_garda where="strftime(’%m’, start_time)=’06’"

Using method option
Method option is able to show raster in different way. By default cols value is used, the
value comma will print only the list of maps inside the space time dataset:

t.rast.list method=comma input=tempmean_monthly
2009_01_tempmean@climate_2009_2012,2009_02_tempmean@climate_2009_2012,2009_03_tempmean@climate_2009_2012, \
2009_04_tempmean@climate_2009_2012,2009_05_tempmean@climate_2009_2012,2009_06_tempmean@climate_2009_2012, \
2009_07_tempmean@climate_2009_2012,2009_08_tempmean@climate_2009_2012,2009_09_tempmean@climate_2009_2012, \
2009_10_tempmean@climate_2009_2012,2009_11_tempmean@climate_2009_2012,2009_12_tempmean@climate_2009_2012, \
2010_01_tempmean@climate_2009_2012,2010_02_tempmean@climate_2009_2012,2010_03_tempmean@climate_2009_2012, \
2010_04_tempmean@climate_2009_2012,2010_05_tempmean@climate_2009_2012,2010_06_tempmean@climate_2009_2012, \
2010_07_tempmean@climate_2009_2012,2010_08_tempmean@climate_2009_2012,2010_09_tempmean@climate_2009_2012, \
2010_10_tempmean@climate_2009_2012,2010_11_tempmean@climate_2009_2012,2010_12_tempmean@climate_2009_2012, \
2011_01_tempmean@climate_2009_2012,2011_02_tempmean@climate_2009_2012,2011_03_tempmean@climate_2009_2012, \
2011_04_tempmean@climate_2009_2012,2011_05_tempmean@climate_2009_2012,2011_06_tempmean@climate_2009_2012, \
2011_07_tempmean@climate_2009_2012,2011_08_tempmean@climate_2009_2012,2011_09_tempmean@climate_2009_2012, \
2011_10_tempmean@climate_2009_2012,2011_11_tempmean@climate_2009_2012,2011_12_tempmean@climate_2009_2012, \
2012_01_tempmean@climate_2009_2012,2012_02_tempmean@climate_2009_2012,2012_03_tempmean@climate_2009_2012, \
2012_04_tempmean@climate_2009_2012,2012_05_tempmean@climate_2009_2012,2012_06_tempmean@climate_2009_2012, \
2012_07_tempmean@climate_2009_2012,2012_08_tempmean@climate_2009_2012,2012_09_tempmean@climate_2009_2012, \
2012_10_tempmean@climate_2009_2012,2012_11_tempmean@climate_2009_2012,2012_12_tempmean@climate_2009_2012
The delta value calculate the interval between maps and the distance from the first map:

t.rast.list method=delta input=tempmean_monthly
id|name|mapset|start_time|end_time|interval_length|distance_from_begin
2009_01_tempmean@climate_2000_2012|2009_01_tempmean|climate_2000_2012|2009-01-01 00:00:00|2009-02-01 00:00:00|31.0|0.0
2009_02_tempmean@climate_2000_2012|2009_02_tempmean|climate_2000_2012|2009-02-01 00:00:00|2009-03-01 00:00:00|28.0|31.0
2009_03_tempmean@climate_2000_2012|2009_03_tempmean|climate_2000_2012|2009-03-01 00:00:00|2009-04-01 00:00:00|31.0|59.0
...
2012_10_tempmean@climate_2000_2012|2012_10_tempmean|climate_2000_2012|2012-10-01 00:00:00|2012-11-01 00:00:00|31.0|1369.0
2012_11_tempmean@climate_2000_2012|2012_11_tempmean|climate_2000_2012|2012-11-01 00:00:00|2012-12-01 00:00:00|30.0|1400.0
2012_12_tempmean@climate_2000_2012|2012_12_tempmean|climate_2000_2012|2012-12-01 00:00:00|2013-01-01 00:00:00|31.0|1430.0
The gran value it is used to return data sampled by a user defined granule. As default the
granularity of the space time raster dataset is used for sampling.

t.rast.list method=gran input=tempmean_monthly
id|name|mapset|start_time|end_time|interval_length|distance_from_begin
2009_01_tempmean@climate_2009_2012|2009_01_tempmean|climate_2009_2012|2009-01-01 00:00:00|2009-02-01 00:00:00|31.0|0.0
2009_02_tempmean@climate_2009_2012|2009_02_tempmean|climate_2009_2012|2009-02-01 00:00:00|2009-03-01 00:00:00|28.0|31.0
2009_03_tempmean@climate_2009_2012|2009_03_tempmean|climate_2009_2012|2009-03-01 00:00:00|2009-04-01 00:00:00|31.0|59.0
2009_04_tempmean@climate_2009_2012|2009_04_tempmean|climate_2009_2012|2009-04-01 00:00:00|2009-05-01 00:00:00|30.0|90.0
....
2012_09_tempmean@climate_2009_2012|2012_09_tempmean|climate_2009_2012|2012-09-01 00:00:00|2012-10-01 00:00:00|30.0|1339.0
2012_10_tempmean@climate_2009_2012|2012_10_tempmean|climate_2009_2012|2012-10-01 00:00:00|2012-11-01 00:00:00|31.0|1369.0
2012_11_tempmean@climate_2009_2012|2012_11_tempmean|climate_2009_2012|2012-11-01 00:00:00|2012-12-01 00:00:00|30.0|1400.0
2012_12_tempmean@climate_2009_2012|2012_12_tempmean|climate_2009_2012|2012-12-01 00:00:00|2013-01-01 00:00:00|31.0|1430.0

t.rast.list method=gran input=tempmean_monthly gran="2 months"
id|name|mapset|start_time|end_time|interval_length|distance_from_begin
2009_01_tempmean@climate_2009_2012|2009_01_tempmean|climate_2009_2012|2009-01-01 00:00:00|2009-03-01 00:00:00|59.0|0.0
2009_03_tempmean@climate_2009_2012|2009_03_tempmean|climate_2009_2012|2009-03-01 00:00:00|2009-05-01 00:00:00|61.0|59.0
2009_05_tempmean@climate_2009_2012|2009_05_tempmean|climate_2009_2012|2009-05-01 00:00:00|2009-07-01 00:00:00|61.0|120.0
....
2012_07_tempmean@climate_2009_2012|2012_07_tempmean|climate_2009_2012|2012-07-01 00:00:00|2012-09-01 00:00:00|62.0|1277.0
2012_09_tempmean@climate_2009_2012|2012_09_tempmean|climate_2009_2012|2012-09-01 00:00:00|2012-11-01 00:00:00|61.0|1339.0
2012_11_tempmean@climate_2009_2012|2012_11_tempmean|climate_2009_2012|2012-11-01 00:00:00|2013-01-01 00:00:00|61.0|1400.0
For the deltagaps value you can see the example for space time vector dataset t.vect.list

Use t.rast.listgrass online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    Phaser
    Phaser
    Phaser is a fast, free, and fun open
    source HTML5 game framework that offers
    WebGL and Canvas rendering across
    desktop and mobile web browsers. Games
    can be co...
    Download Phaser
  • 2
    VASSAL Engine
    VASSAL Engine
    VASSAL is a game engine for creating
    electronic versions of traditional board
    and card games. It provides support for
    game piece rendering and interaction,
    and...
    Download VASSAL Engine
  • 3
    OpenPDF - Fork of iText
    OpenPDF - Fork of iText
    OpenPDF is a Java library for creating
    and editing PDF files with a LGPL and
    MPL open source license. OpenPDF is the
    LGPL/MPL open source successor of iText,
    a...
    Download OpenPDF - Fork of iText
  • 4
    SAGA GIS
    SAGA GIS
    SAGA - System for Automated
    Geoscientific Analyses - is a Geographic
    Information System (GIS) software with
    immense capabilities for geodata
    processing and ana...
    Download SAGA GIS
  • 5
    Toolbox for Java/JTOpen
    Toolbox for Java/JTOpen
    The IBM Toolbox for Java / JTOpen is a
    library of Java classes supporting the
    client/server and internet programming
    models to a system running OS/400,
    i5/OS, o...
    Download Toolbox for Java/JTOpen
  • 6
    D3.js
    D3.js
    D3.js (or D3 for Data-Driven Documents)
    is a JavaScript library that allows you
    to produce dynamic, interactive data
    visualizations in web browsers. With D3
    you...
    Download D3.js
  • More »

Linux commands

Ad