EnglishFrenchSpanish

OnWorks favicon

t.rast.neighborsgrass - Online in the Cloud

Run t.rast.neighborsgrass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command t.rast.neighborsgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


t.rast.neighbors - Performs a neighborhood analysis for each map in a space time raster
dataset.

KEYWORDS


temporal, aggregation, raster, time

SYNOPSIS


t.rast.neighbors
t.rast.neighbors --help
t.rast.neighbors [-n] input=name output=name [where=sql_query] [size=integer]
method=string basename=string [nprocs=integer] [--overwrite] [--help] [--verbose]
[--quiet] [--ui]

Flags:
-n
Register Null maps

--overwrite
Allow output files to overwrite existing files

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of the input space time raster dataset

output=name [required]
Name of the output space time raster dataset

where=sql_query
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS
framework
Example: start_time > ’2001-01-01 12:30:00’

size=integer
Neighborhood size
Default: 3

method=string [required]
Aggregate operation to be performed on the raster maps
Options: average, median, mode, minimum, maximum, range, stddev, sum, count, variance,
diversity, interspersion, quart1, quart3, perc90, quantile
Default: average

basename=string [required]
Basename of the new generated output maps
A numerical suffix separated by an underscore will be attached to create a unique
identifier

nprocs=integer
Number of r.neighbor processes to run in parallel
Default: 1

DESCRIPTION


t.rast.neighbors performs r.neighbors computations on the maps of a space time raster
dataset (STRDS). This module supports a subset of options that are available in
r.neighbors. The size of the neighborhood and the aggregation method can be chosen.

The user must provide an input and an output space time raster dataset and the basename
of the resulting raster maps. The resulting STRDS will have the same temporal resolution
as the input dataset. All maps will be processed using the current region settings.

The user can select a subset of the input space time raster dataset for processing using a
SQL WHERE statement. The number of CPU’s to be used for parallel processing can be
specified with the nprocs option, to speedup the computation on multi-core system.

EXAMPLE


To smooth the maps contained into a space time dataset run:
t.rast.neighbors input=tempmean_monthly output=smooth_tempmean_monthly \
basename=tmean_smooth size=5 method=average nprocs=4
# show some info about the new space time dataset
t.info smooth_tempmean_monthly
+-------------------- Space Time Raster Dataset -----------------------------+
| |
+-------------------- Basic information -------------------------------------+
| Id: ........................ smooth_tempmean_monthly@climate_2000_2012
| Name: ...................... smooth_tempmean_monthly
| Mapset: .................... climate_2000_2012
| Creator: ................... lucadelu
| Temporal type: ............. absolute
| Creation time: ............. 2014-11-27 11:41:36.444579
| Modification time:.......... 2014-11-27 11:41:39.978232
| Semantic type:.............. mean
+-------------------- Absolute time -----------------------------------------+
| Start time:................. 2009-01-01 00:00:00
| End time:................... 2013-01-01 00:00:00
| Granularity:................ 1 month
| Temporal type of maps:...... interval
+-------------------- Spatial extent ----------------------------------------+
| North:...................... 320000.0
| South:...................... 10000.0
| East:.. .................... 935000.0
| West:....................... 120000.0
| Top:........................ 0.0
| Bottom:..................... 0.0
+-------------------- Metadata information ----------------------------------+
| Raster register table:...... raster_map_register_ea1c9a83524e41a784d72744b08c6107
| North-South resolution min:. 500.0
| North-South resolution max:. 500.0
| East-west resolution min:... 500.0
| East-west resolution max:... 500.0
| Minimum value min:.......... -6.428905
| Minimum value max:.......... 18.867296
| Maximum value min:.......... 4.247691
| Maximum value max:.......... 28.767953
| Aggregation type:........... None
| Number of registered maps:.. 48
|
| Title:
| Monthly precipitation
| Description:
| Dataset with monthly precipitation
| Command history:
| # 2014-11-27 11:41:36
| t.rast.neighbors input="tempmean_monthly"
| output="smooth_tempmean_monthly" basename="tmean_smooth" size="5"
| method="average" nprocs="4"
|
+----------------------------------------------------------------------------+
# now compare the values between original data and the smoothed one
t.rast.list input=smooth_tempmean_monthly columns=name,start_time,min,max
t.rast.list input=smooth_tempmean_monthly columns=name,start_time,min,max
name|start_time|min|max
tmean_smooth_1|2009-01-01 00:00:00|-3.361714|7.409861
tmean_smooth_2|2009-02-01 00:00:00|-1.820261|7.986794
tmean_smooth_3|2009-03-01 00:00:00|2.912971|11.799684
...
tmean_smooth_46|2012-10-01 00:00:00|9.38767|18.709297
tmean_smooth_47|2012-11-01 00:00:00|1.785653|10.911189
tmean_smooth_48|2012-12-01 00:00:00|1.784212|11.983857
t.rast.list input=tempmean_monthly columns=name,start_time,min,max
name|start_time|min|max
2009_01_tempmean|2009-01-01 00:00:00|-3.380823|7.426054
2009_02_tempmean|2009-02-01 00:00:00|-1.820261|8.006386
2009_03_tempmean|2009-03-01 00:00:00|2.656992|11.819274
...
2012_10_tempmean|2012-10-01 00:00:00|9.070884|18.709297
2012_11_tempmean|2012-11-01 00:00:00|1.785653|10.911189
2012_12_tempmean|2012-12-01 00:00:00|1.761019|11.983857

Use t.rast.neighborsgrass online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    turkdevops
    turkdevops
    TurkDevOps a�?k kaynak yaz?l?m
    geli?tirici topluluklar? DevTurks-Team
    Taraf?ndan desteklenmektedir..
    Features:https://github.com/turkdevopshttps://turkdevops.g...
    Download turkdevops
  • 2
    asammdf
    asammdf
    *asammdf* is a fast Python parser and
    editor for ASAM (Associtation for
    Standardisation of Automation and
    Measuring Systems) MDF / MF4
    (Measurement Data Format...
    Download asammdf
  • 3
    LAME (Lame Aint an MP3 Encoder)
    LAME (Lame Aint an MP3 Encoder)
    LAME is an educational tool to be used
    for learning about MP3 encoding. The
    goal of the LAME project is to improve
    the psycho acoustics, quality and speed
    of MP...
    Download LAME (Lame Aint an MP3 Encoder)
  • 4
    wxPython
    wxPython
    A set of Python extension modules that
    wrap the cross-platform GUI classes from
    wxWidgets.. Audience: Developers. User
    interface: X Window System (X11), Win32 ...
    Download wxPython
  • 5
    packfilemanager
    packfilemanager
    This is the Total War pack file manager
    project, starting from version 1.7. A
    short introduction into Warscape
    modding: ...
    Download packfilemanager
  • 6
    IPerf2
    IPerf2
    A network traffic tool for measuring
    TCP and UDP performance with metrics
    around both throughput and latency. The
    goals include maintaining an active
    iperf cod...
    Download IPerf2
  • More »

Linux commands

Ad