This is the command t.rast.seriesgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator
PROGRAM:
NAME
t.rast.series - Performs different aggregation algorithms from r.series on all or a
subset of raster maps in a space time raster dataset.
KEYWORDS
temporal, series, raster, time
SYNOPSIS
t.rast.series
t.rast.series --help
t.rast.series [-tn] input=name method=string [order=string[,string,...]]
[where=sql_query] output=name [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
-t
Do not assign the space time raster dataset start and end time to the output map
-n
Propagate NULLs
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog
Parameters:
input=name [required]
Name of the input space time raster dataset
method=string [required]
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum, max_raster,
stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3,
perc90, quantile, skewness, kurtosis
Default: average
order=string[,string,...]
Sort the maps by category
Options: id, name, creator, mapset, creation_time, modification_time,
start_time, end_time, north, south, west, east, min, max
Default: start_time
where=sql_query
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS
framework
Example: start_time > ’2001-01-01 12:30:00’
output=name [required]
Name for output raster map
DESCRIPTION
t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of
the aggregation methods of r.series.
The input of this module is a single space time raster dataset, the output is a single
raster map layer. A subset of the input space time raster dataset can be selected using
the where option. The sorting of the raster map layer can be set using the order option.
Be aware that the order of the maps can significantly influence the result of the
aggregation (e.g.: slope). By default the maps are ordered by start_time.
EXAMPLE
Estimate average temperature for the whole time series
t.rast.series input=tempmean_monthly output=tempmean_general method=average
Estimate average temperature for all January maps in the time series, the so-called
climatology
t.rast.series input=tempmean_monthly \
method=average output=tempmean_january \
where="strftime(’%m’, start_time)=’01’"
# equivalently, we can use
t.rast.series input=tempmean_monthly \
output=tempmean_january method=average \
where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
# if we want also February and March averages
t.rast.series input=tempmean_monthly \
output=tempmean_february method=average \
where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
t.rast.series input=tempmean_monthly \
output=tempmean_march method=average \
where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
Generalizing a bit, we can estimate monthly climatologies for all months by means of
different methods
for i in `seq -w 1 12` ; do
for m in average stddev minimum maximum ; do
t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
where="strftime(’%m’, start_time)=’${i}’"
done
done
Use t.rast.seriesgrass online using onworks.net services