This is the command sprof that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator
PROGRAM:
NAME
sprof - read and display shared object profiling data
SYNOPSIS
sprof [option]... shared-object-path [profile-data-path]
DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared library)
specified as its first command-line argument. The profiling summary is created using
previously generated profiling data in the (optional) second command-line argument. If
the profiling data pathname is omitted, then sprof will attempt to deduce it using the
soname of the shared object, looking for a file with the name <soname>.profile in the
current directory.
OPTIONS
The following command-line options specify the profile output to be produced:
-c, --call-pairs
Print a list of pairs of call paths for the interfaces exported by the shared
object, along with the number of times each path is used.
-p, --flat-profile
Generate a flat profile of all of the functions in the monitored object, with
counts and ticks.
-q, --graph
Generate a call graph.
If none of the above options is specified, then the default behavior is to display a flat
profile and a call graph.
The following additional command-line options are available:
-?, --help
Display a summary of command-line options and arguments and exit.
--usage
Display a short usage message and exit.
-V, --version
Display the program version and exit.
CONFORMING TO
The sprof command is a GNU extension, not present in POSIX.1.
EXAMPLE
The following example demonstrates the use of sprof. The example consists of a main
program that calls two functions in a shared object. First, the code of the main program:
$ cat prog.c
#include <stdlib.h>
void x1(void);
void x2(void);
int
main(int argc, char *argv[])
{
x1();
x2();
exit(EXIT_SUCCESS);
}
The functions x1() and x2() are defined in the following source file that is used to
construct the shared object:
$ cat libdemo.c
#include <unistd.h>
void
consumeCpu1(int lim)
{
int j;
for (j = 0; j < lim; j++)
getppid();
}
void
x1(void) {
int j;
for (j = 0; j < 100; j++)
consumeCpu1(200000);
}
void
consumeCpu2(int lim)
{
int j;
for (j = 0; j < lim; j++)
getppid();
}
void
x2(void)
{
int j;
for (j = 0; j < 1000; j++)
consumeCpu2(10000);
}
Now we construct the shared object with the real name libdemo.so.1.0.1, and the soname
libdemo.so.1:
$ cc -g -fPIC -shared -Wl,-soname,libdemo.so.1 \
-o libdemo.so.1.0.1 libdemo.c
Then we construct symbolic links for the library soname and the library linker name:
$ ln -sf libdemo.so.1.0.1 libdemo.so.1
$ ln -sf libdemo.so.1 libdemo.so
Next, we compile the main program, linking it against the shared object, and then list the
dynamic dependencies of the program:
$ cc -g -o prog prog.c -L. -ldemo
$ ldd prog
linux-vdso.so.1 => (0x00007fff86d66000)
libdemo.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000)
/lib64/ld-linux-x86-64.so.2 (0x00007fd4dc51f000)
In order to get profiling information for the shared object, we define the environment
variable LD_PROFILE with the soname of the library:
$ export LD_PROFILE=libdemo.so.1
We then define the environment variable LD_PROFILE_OUTPUT with the pathname of the
directory where profile output should be written, and create that directory if it does not
exist already:
$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data
$ mkdir -p $LD_PROFILE_OUTPUT
LD_PROFILE causes profiling output to be appended to the output file if it already exists,
so we ensure that there is no preexisting profiling data:
$ rm -f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile
We then run the program to produce the profiling output, which is written to a file in the
directory specified in LD_PROFILE_OUTPUT:
$ LD_LIBRARY_PATH=. ./prog
$ ls prof_data
libdemo.so.1.profile
We then use the sprof -p option to generate a flat profile with counts and ticks:
$ sprof -p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
60.00 0.06 0.06 100 600.00 consumeCpu1
40.00 0.10 0.04 1000 40.00 consumeCpu2
0.00 0.10 0.00 1 0.00 x1
0.00 0.10 0.00 1 0.00 x2
The sprof -q option generates a call graph:
$ sprof -q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
index % time self children called name
0.00 0.00 100/100 x1 [1]
[0] 100.0 0.00 0.00 100 consumeCpu1 [0]
-----------------------------------------------
0.00 0.00 1/1 <UNKNOWN>
[1] 0.0 0.00 0.00 1 x1 [1]
0.00 0.00 100/100 consumeCpu1 [0]
-----------------------------------------------
0.00 0.00 1000/1000 x2 [3]
[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]
-----------------------------------------------
0.00 0.00 1/1 <UNKNOWN>
[3] 0.0 0.00 0.00 1 x2 [3]
0.00 0.00 1000/1000 consumeCpu2 [2]
-----------------------------------------------
Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of the
profiled object (in this example, these are instances of main()).
The sprof -c option generates a list of call pairs and the number of their occurrences:
$ sprof -c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
<UNKNOWN> x1 1
x1 consumeCpu1 100
<UNKNOWN> x2 1
x2 consumeCpu2 1000
Use sprof online using onworks.net services