EnglishFrenchSpanish

OnWorks favicon

pkfssvm - Online in the Cloud

Run pkfssvm in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command pkfssvm that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


pkfssvm - feature selection for nn classifier

SYNOPSIS


pkfssvm -t training -n number [options] [advanced options]

DESCRIPTION


Classification problems dealing with high dimensional input data can be challenging due to
the Hughes phenomenon. Hyperspectral data, for instance, can have hundreds of spectral
bands and require special attention when being classified. In particular when limited
training data are available, the classification of such data can be problematic without
reducing the dimension.

The SVM classifier has been shown to be more robust to this type of problem than others.
Nevertheless, classification accuracy can often be improved with feature selection
methods. The utility pkfssvm implements a number of feature selection techniques, among
which a sequential floating forward search (SFFS).

OPTIONS


-t filename, --training filename
training vector file. A single vector file contains all training features (must be
set as: B0, B1, B2,...) for all classes (class numbers identified by label option).
Use multiple training files for bootstrap aggregation (alternative to the bag and
bsize options, where a random subset is taken from a single training file)

-n number, --nf number
number of features to select (0 to select optimal number, see also --ecost option)

-i filename, --input filename
input test set (leave empty to perform a cross validation based on training only)

-v level, --verbose level
set to: 0 (results only), 1 (confusion matrix), 2 (debug)

Advanced options

-tln layer, --tln layer
training layer name(s)

-label attribute, --label attribute
identifier for class label in training vector file. (default: label)

-bal size, --balance size
balance the input data to this number of samples for each class (default: 0)

-random, --random
in case of balance, randomize input data

-min number, --min number
if number of training pixels is less then min, do not take this class into account

-b band, --band band
band index (starting from 0, either use band option or use start to end)

-sband band, --startband band
start band sequence number

-eband band, --endband band
end band sequence number

-offset value, --offset value
offset value for each spectral band input features:
refl[band]=(DN[band]-offset[band])/scale[band]

-scale value, --scale value
scale value for each spectral band input features:
refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band
to -1.0 and 1.0)

-svmt type, --svmtype type
type of SVM (C_SVC, nu_SVC,one_class, epsilon_SVR, nu_SVR)

-kt type, --kerneltype type
type of kernel function (linear,polynomial,radial,sigmoid)

-kd value, --kd value
degree in kernel function

-g value, --gamma value
gamma in kernel function

-c0 value, --coef0 value
coef0 in kernel function

-cc value, --ccost value
the parameter C of C-SVC, epsilon-SVR, and nu-SVR

-nu value, --nu value
the parameter nu of nu-SVC, one-class SVM, and nu-SVR

-eloss value, --eloss value
the epsilon in loss function of epsilon-SVR

-cache number, --cache number
cache memory size in MB (default: 100)

-etol value, --etol value
the tolerance of termination criterion (default: 0.001)

-shrink, --shrink
whether to use the shrinking heuristics

-sm method, --sm method
feature selection method (sffs=sequential floating forward search, sfs=sequential
forward search, sbs, sequential backward search, bfs=brute force search)

-ecost value, --ecost value
epsilon for stopping criterion in cost function to determine optimal number of
features

-cv value, --cv value
n-fold cross validation mode (default: 0)

-c name, --class name
list of class names.

-r value, --reclass value
list of class values (use same order as in --class option).

Use pkfssvm online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    Free Pascal Compiler
    Free Pascal Compiler
    A 32/64/16-bit Pascal compiler for
    Win32/64/CE, Linux, Mac OS X/iOS,
    Android, FreeBSD, OS/2, Game Boy
    Advance, Nintendo NDS and DOS;
    semantically compatible wi...
    Download Free Pascal Compiler
  • 2
    Canon EOS DIGITAL Info
    Canon EOS DIGITAL Info
    Canon doesn�t have shutter count
    included on the EXIF information of an
    image file, as opposed to Nikon and
    Pentax. There�s no official Canon based
    application ...
    Download Canon EOS DIGITAL Info
  • 3
    rEFInd
    rEFInd
    rEFInd is a fork of the rEFIt boot
    manager. Like rEFIt, rEFInd can
    auto-detect your installed EFI boot
    loaders and it presents a pretty GUI
    menu of boot option...
    Download rEFInd
  • 4
    ExpressLuke GSI
    ExpressLuke GSI
    This SourceForge download page was to
    grant users to download my source built
    GSIs, based upon phhusson's great
    work. I build both Android Pie and
    Android 1...
    Download ExpressLuke GSI
  • 5
    Music Caster
    Music Caster
    Music Caster is a tray music player
    that lets you cast your local music to a
    Google Cast device. On the first run,
    you will need to click the arrow in your
    tas...
    Download Music Caster
  • 6
    PyQt
    PyQt
    PyQt is the Python bindings for
    Digia's Qt cross-platform
    application development framework. It
    supports Python v2 and v3 and Qt v4 and
    Qt v5. PyQt is avail...
    Download PyQt
  • More »

Linux commands

Ad