EnglishFrenchSpanish

OnWorks favicon

t.rast.to.rast3grass - Online in the Cloud

Run t.rast.to.rast3grass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command t.rast.to.rast3grass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


t.rast.to.rast3 - Converts a space time raster dataset into a 3D raster map.

KEYWORDS


temporal, conversion, raster, raster3d, voxel, time

SYNOPSIS


t.rast.to.rast3
t.rast.to.rast3 --help
t.rast.to.rast3 input=name output=name [--overwrite] [--help] [--verbose] [--quiet]
[--ui]

Flags:
--overwrite
Allow output files to overwrite existing files

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of the input space time raster dataset

output=name [required]
Name for output 3D raster map

DESCRIPTION


t.rast.to.rast3 is designed to convert a space time raster dataset (STRDS) into a space
time voxel cube. A space time voxel cube is a 3 dimensional raster map layer (3D raster
map or voxel map layer) that as time as unit for the z-dimension.

A space time raster dataset that should be converted into a space time voxel cube must
have a valid temporal topology. Hence, overlapping or inclusion of time stamps is not
allowed. The granularity of the STRDS is used to set the resolution of the 3D raster map
layer and to sample the registered time stamped raster map layers.

Gaps between raster map layer in the STRDS will be represented by NULL values in the voxel
map layer.

NOTES


The reference time for all space time voxel cubes is 1900-01-0100:00:00. This allows the
alignment space time voxel cubes with different granularities.

Be aware that the granularity of a STRDS is used to sample time stamped map layers! If you
have gaps between monthly intervals that have the size of a second, the monthly intervals
will be sampled by a second based granularity as well. This may result in millions of
space time voxel cube layers!

EXAMPLE


To create a voxel map layer from a subset of the tempmean_monthly space time dataset, run:
# create the subset for 2012 data
t.rast.extract input=tempmean_monthly output=tempmean_monthly_later_2012 \
where="start_time >= ’2012-01-01’"
# set the right 3D region
g.region -p3 res3=500
# convert to 3D raster map
t.rast.to.rast3 input=tempmean_monthly_later_2012@climate_2009_2012 output=tempmean_monthly_2012
t.info type=raster_3d input=tempmean_monthly_2012
+-------------------- 3D Raster Dataset -------------------------------------+
| |
+-------------------- Basic information -------------------------------------+
| Id: ........................ tempmean_monthly_2012@climate_2009_2012
| Name: ...................... tempmean_monthly_2012
| Mapset: .................... climate_2009_2012
| Creator: ................... lucadelu
| Temporal type: ............. absolute
| Creation time: ............. 2014-11-28 11:10:51.679294
+-------------------- Absolute time -----------------------------------------+
| Start time:................. 2012-01-01 00:00:00
| End time:................... 2013-01-01 00:00:00
+-------------------- Spatial extent ----------------------------------------+
| North:...................... 320000.0
| South:...................... 10000.0
| East:.. .................... 935000.0
| West:....................... 120000.0
| Top:........................ 1357.0
| Bottom:..................... 1345.0
+-------------------- Metadata information ----------------------------------+
| Datatype:................... DCELL
| Number of columns:.......... 620
| Number of rows:............. 1630
| Number of cells:............ 12127200
| North-South resolution:..... 500.0
| East-west resolution:....... 500.0
| Minimum value:.............. -0.534994
| Maximum value:.............. 28.794653
| Number of depths:........... 12
| Top-Bottom resolution:...... 1.0
| Registered datasets ........
+----------------------------------------------------------------------------+
r3.info tempmean_monthly_2012
+----------------------------------------------------------------------------+
| Layer: tempmean_monthly_2012 Date: Fri Nov 28 11:10:50 2014 |
| Mapset: climate_2009_2012 Login of Creator: lucadelu |
| Location: nc_spm_temporal_workshop |
| DataBase: /grassdata |
| Title: Space time voxel cube |
| Units: none |
| Vertical unit: months |
| Timestamp: none |
|----------------------------------------------------------------------------|
| |
| Type of Map: 3d cell Number of Categories: 0 |
| Data Type: DCELL |
| Rows: 620 |
| Columns: 1630 |
| Depths: 12 |
| Total Cells: 12127200 |
| Total size: 28414287 Bytes |
| Number of tiles: 4230 |
| Mean tile size: 6717 Bytes |
| Tile size in memory: 23520 Bytes |
| Number of tiles in x, y and z: 47, 45, 2 |
| Dimension of a tile in x, y, z: 35, 14, 6 |
| |
| Projection: Lambert Conformal Conic (zone 0) |
| N: 320000 S: 10000 Res: 500 |
| E: 935000 W: 120000 Res: 500 |
| T: 1357 B: 1345 Res: 1 |
| Range of data: min = -0.53499434 max = 28.79465315 |
| |
| Data Source: |
| |
| |
| |
| Data Description: |
| This space time voxel cube was created with t.rast.to.rast3 |
| |
| Comments: |
| r.to.rast3 input="2012_01_tempmean@climate_2009_2012,2012_02_tempmea\ |
| n@climate_2009_2012,2012_03_tempmean@climate_2009_2012,2012_04_tempm\ |
| ean@climate_2009_2012,2012_05_tempmean@climate_2009_2012,2012_06_tem\ |
| pmean@climate_2009_2012,2012_07_tempmean@climate_2009_2012,2012_08_t\ |
| empmean@climate_2009_2012,2012_09_tempmean@climate_2009_2012,2012_10\ |
| _tempmean@climate_2009_2012,2012_11_tempmean@climate_2009_2012,2012_\ |
| 12_tempmean@climate_2009_2012" output="tempmean_monthly_2012" tilesi\ |
| ze=32 |
| |
+----------------------------------------------------------------------------+

Use t.rast.to.rast3grass online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    Osu!
    Osu!
    Osu! is a simple rhythm game with a well
    thought out learning curve for players
    of all skill levels. One of the great
    aspects of Osu! is that it is
    community-dr...
    Download Osu!
  • 2
    LIBPNG: PNG reference library
    LIBPNG: PNG reference library
    Reference library for supporting the
    Portable Network Graphics (PNG) format.
    Audience: Developers. Programming
    Language: C. This is an application that
    can also...
    Download LIBPNG: PNG reference library
  • 3
    Metal detector based on  RP2040
    Metal detector based on RP2040
    Based on Raspberry Pi Pico board, this
    metal detector is included in pulse
    induction metal detectors category, with
    well known advantages and disadvantages.
    RP...
    Download Metal detector based on RP2040
  • 4
    PAC Manager
    PAC Manager
    PAC is a Perl/GTK replacement for
    SecureCRT/Putty/etc (linux
    ssh/telnet/... gui)... It provides a GUI
    to configure connections: users,
    passwords, EXPECT regula...
    Download PAC Manager
  • 5
    GeoServer
    GeoServer
    GeoServer is an open-source software
    server written in Java that allows users
    to share and edit geospatial data.
    Designed for interoperability, it
    publishes da...
    Download GeoServer
  • 6
    Firefly III
    Firefly III
    A free and open-source personal finance
    manager. Firefly III features a
    double-entry bookkeeping system. You can
    quickly enter and organize your
    transactions i...
    Download Firefly III
  • More »

Linux commands

Ad