This is the command mlpack_kmeans that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator
PROGRAM:
NAME
mlpack_kmeans - k-means clustering
SYNOPSIS
mlpack_kmeans [-h] [-v] -c int -i string [-a string] [-e] [-C string] [-P] [-I string] [-l] [-m int] [-o string] [-p double] [-r] [-S int] [-s int] -V
DESCRIPTION
This program performs K-Means clustering on the given dataset, storing the learned cluster
assignments either as a column of labels in the file containing the input dataset or in a
separate file. Empty clusters are not allowed by default; when a cluster becomes empty,
the point furthest from the centroid of the cluster with maximum variance is taken to fill
that cluster.
Optionally, the Bradley and Fayyad approach ("Refining initial points for k-means
clustering", 1998) can be used to select initial points by specifying the --refined_start
(-r) option. This approach works by taking random samples of the dataset; to specify the
number of samples, the --samples parameter is used, and to specify the percentage of the
dataset to be used in each sample, the --percentage parameter is used (it should be a
value between 0.0 and 1.0).
There are several options available for the algorithm used for each Lloyd iteration,
specified with the --algorithm (-a) option. The standard O(kN) approach can be used
('naive'). Other options include the Pelleg-Moore tree-based algorithm ('pelleg-moore'),
Elkan's triangle-inequality based algorithm ('elkan'), Hamerly's modification to Elkan's
algorithm ('hamerly'), the dual-tree k-means algorithm ('dualtree'), and the dual-tree k-
means algorithm using the cover tree ('dualtree-covertree').
As of October 2014, the --overclustering option has been removed. If you want this support
back, let us know -- file a bug at https://github.com/mlpack/mlpack/ or get in touch
through another means.
REQUIRED OPTIONS
--clusters (-c) [int]
Number of clusters to find (0 autodetects from initial centroids).
--input_file (-i) [string]
Input dataset to perform clustering on.
OPTIONS
--algorithm (-a) [string]
Algorithm to use for the Lloyd iteration ('naive', 'pelleg-moore', 'elkan',
'hamerly', 'dualtree', or 'dualtree-covertree'). Default value 'naive'.
--allow_empty_clusters (-e)
Allow empty clusters to be created.
--centroid_file (-C) [string]
If specified, the centroids of each cluster will be written to the given file.
Default value ''.
--help (-h)
Default help info.
--in_place (-P)
If specified, a column containing the learned cluster assignments will be added to
the input dataset file. In this case, --outputFile is overridden.
--info [string]
Get help on a specific module or option. Default value ''.
--initial_centroids (-I) [string]
Start with the specified initial centroids. Default value ''.
--labels_only (-l)
Only output labels into output file.
--max_iterations (-m) [int]
Maximum number of iterations before K-Means terminates. Default value 1000.
--output_file (-o) [string]
File to write output labels or labeled data to. Default value ''.
--percentage (-p) [double]
Percentage of dataset to use for each refined start sampling (use when
--refined_start is specified). Default value 0.02.
--refined_start (-r)
Use the refined initial point strategy by Bradley and Fayyad to choose initial
points.
--samplings (-S) [int]
Number of samplings to perform for refined start
(use when --refined_start is specified).
Default value 100.
--seed (-s) [int]
Random seed. If 0, 'std::time(NULL)' is used. Default value 0.
--verbose (-v)
Display informational messages and the full list of parameters and timers at the
end of execution.
--version (-V)
Display the version of mlpack.
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, consult the
documentation found at http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK.
mlpack_kmeans(1)
Use mlpack_kmeans online using onworks.net services