mlpack_local_coordinate_coding - Online in the Cloud

This is the command mlpack_local_coordinate_coding that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


mlpack_local_coordinate_coding - local coordinate coding

SYNOPSIS


mlpack_local_coordinate_coding [-h] [-v] [-k int] [-c string] [-d string] [-i string] [-m string] [-l double] [-n int] [-N] [-M string] [-s int] [-T string] [-o double] [-t string] -V

DESCRIPTION


An implementation of Local Coordinate Coding (LCC), which codes data that approximately
lives on a manifold using a variation of l1-norm regularized sparse coding. Given a dense
data matrix X with n points and d dimensions, LCC seeks to find a dense dictionary matrix
D with k atoms in d dimensions, and a coding matrix Z with n points in k dimensions.
Because of the regularization method used, the atoms in D should lie close to the manifold
on which the data points lie.

The original data matrix X can then be reconstructed as D * Z. Therefore, this program
finds a representation of each point in X as a sparse linear combination of atoms in the
dictionary D.

The coding is found with an algorithm which alternates between a dictionary step, which
updates the dictionary D, and a coding step, which updates the coding matrix Z.

To run this program, the input matrix X must be specified (with -i), along with the number
of atoms in the dictionary (-k). An initial dictionary may also be specified with the
--initial_dictionary option. The l1-norm regularization parameter is specified with -l.
For example, to run LCC on the dataset in data.csv using 200 atoms and an
l1-regularization parameter of 0.1, saving the dictionary into dict.csv and the codes into
codes.csv, use

$ local_coordinate_coding -i data.csv -k 200 -l 0.1 -d dict.csv -c codes.csv

The maximum number of iterations may be specified with the -n option. Optionally, the
input data matrix X can be normalized before coding with the -N option.

OPTIONS


--atoms (-k) [int]
Number of atoms in the dictionary. Default value 0.

--codes_file (-c) [string]
Filename to save the output codes to. Default value ''. --dictionary_file (-d)
[string] Filename to save the output dictionary to. Default value ''.

--help (-h)
Default help info.

--info [string]
Get help on a specific module or option. Default value ''. --initial_dictionary
(-i) [string] Filename for optional initial dictionary. Default value ''.
--input_model_file (-m) [string] File containing input LCC model. Default value ’'.

--lambda (-l) [double]
Weighted l1-norm regularization parameter. Default value 0.

--max_iterations (-n) [int]
Maximum number of iterations for LCC (0 indicates no limit). Default value 0.

--normalize (-N)
If set, the input data matrix will be normalized before coding.
--output_model_file (-M) [string] File to save trained LCC model to. Default value
''.

--seed (-s) [int]
Random seed. If 0, 'std::time(NULL)' is used. Default value 0.

--test_file (-T) [string]
File of test points to encode. Default value ’'.

--tolerance (-o) [double]
Tolerance for objective function. Default value 0.01. --training_file (-t)
[string] Filename of the training data (X). Default value ''.

--verbose (-v)
Display informational messages and the full list of parameters and timers at the
end of execution.

--version (-V)
Display the version of mlpack.

ADDITIONAL INFORMATION


ADDITIONAL INFORMATION


For further information, including relevant papers, citations, and theory, For further
information, including relevant papers, citations, and theory, consult the documentation
found at http://www.mlpack.org or included with your consult the documentation found at
http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK. DISTRIBUTION OF
MLPACK.

mlpack_local_coordinate_coding(1)

Use mlpack_local_coordinate_coding online using onworks.net services



Latest Linux & Windows online programs