This is the command r.covargrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator
PROGRAM:
NAME
r.covar - Outputs a covariance/correlation matrix for user-specified raster map layer(s).
KEYWORDS
raster, statistics
SYNOPSIS
r.covar
r.covar --help
r.covar [-r] map=name[,name,...] [--help] [--verbose] [--quiet] [--ui]
Flags:
-r
Print correlation matrix
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog
Parameters:
map=name[,name,...] [required]
Name of raster map(s)
DESCRIPTION
r.covar outputs a covariance/correlation matrix for user-specified raster map layer(s).
The output can be printed, or saved by redirecting output into a file.
The output is an N x N symmetric covariance (correlation) matrix, where N is the number of
raster map layers specified on the command line.
NOTES
This module can be used as the first step of a principle components transformation. The
covariance matrix would be input into a system which determines eigen values and eigen
vectors. An NxN covariance matrix would result in N real eigen values and N eigen vectors
(each composed of N real numbers).
The module m.eigensystem in GRASS GIS Addons can be compiled and used to generate the
eigen values and vectors.
EXAMPLE
For example,
g.region raster=layer.1 -p
r.covar -r map=layer.1,layer.2,layer.3
would produce a 3x3 matrix (values are example only):
1.000000 0.914922 0.889581
0.914922 1.000000 0.939452
0.889581 0.939452 1.000000
In the above example, the eigen values and corresponding eigen vectors for the covariance
matrix are:
component eigen value eigen vector
1 1159.745202 <0.691002 0.720528 0.480511>
2 5.970541 <0.711939 -0.635820 -0.070394>
3 146.503197 <0.226584 0.347470 -0.846873>
The component corresponding to each vector can be produced using r.mapcalc as follows:
r.mapcalc "pc.1 = 0.691002*layer.1 + 0.720528*layer.2 + 0.480511*layer.3"
r.mapcalc "pc.2 = 0.711939*layer.1 - 0.635820*layer.2 - 0.070394*layer.3"
r.mapcalc "pc.3 = 0.226584*layer.1 + 0.347470*layer.2 - 0.846873*layer.3"
Note that based on the relative sizes of the eigen values, pc.1 will contain about 88% of
the variance in the data set, pc.2 will contain about 1% of the variance in the data set,
and pc.3 will contain about 11% of the variance in the data set. Also, note that the
range of values produced in pc.1, pc.2, and pc.3 will not (in general) be the same as
those for layer.1, layer.2, and layer.3. It may be necessary to rescale pc.1, pc.2 and
pc.3 to the desired range (e.g. 0-255). This can be done with r.rescale.
Use r.covargrass online using onworks.net services