EnglishFrenchSpanish

OnWorks favicon

rtrace - Online in the Cloud

Run rtrace in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command rtrace that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


rtrace - trace rays in RADIANCE scene

SYNOPSIS


rtrace [ options ] [ $EVAR ] [ @file ] octree
rtrace [ options ] -defaults

DESCRIPTION


Rtrace traces rays from the standard input through the RADIANCE scene given by octree and
sends the results to the standard output. (The octree may be given as the output of a
command enclosed in quotes and preceded by a `!'.) Input for each ray is:

xorg yorg zorg xdir ydir zdir

If the direction vector is (0,0,0), a bogus record is printed and the output is flushed if
the -x value is unset or zero. (See the notes on this option below.) This may be useful
for programs that run rtrace as a separate process. In the second form, the default
values for the options (modified by those options present) are printed with a brief
explanation.

Options may be given on the command line and/or read from the environment and/or read from
a file. A command argument beginning with a dollar sign ('$') is immediately replaced by
the contents of the given environment variable. A command argument beginning with an at
sign ('@') is immediately replaced by the contents of the given file. Most options are
followed by one or more arguments, which must be separated from the option and each other
by white space. The exceptions to this rule are the boolean options. Normally, the
appearance of a boolean option causes a feature to be "toggled", that is switched from off
to on or on to off depending on its previous state. Boolean options may also be set
explicitly by following them immediately with a '+' or '-', meaning on or off,
respectively. Synonyms for '+' are any of the characters "yYtT1", and synonyms for '-'
are any of the characters "nNfF0". All other characters will generate an error.

-fio Format input according to the character i and output according to the character
o. Rtrace understands the following input and output formats: 'a' for ascii,
'f' for single-precision floating point, and 'd' for double-precision floating
point. In addition to these three choices, the character 'c' may be used to
denote 4-byte floating point (Radiance) color format for the output of values
only (-ov option, below). If the output character is missing, the input format
is used.

Note that there is no space between this option and its argument.

-ospec Produce output fields according to spec. Characters are interpreted as follows:

o origin (input)

d direction (normalized)

v value (radiance)

V contribution (radiance)

w weight

W color coefficient

l effective length of ray

L first intersection distance

c local (u,v) coordinates

p point of intersection

n normal at intersection (perturbed)

N normal at intersection (unperturbed)

s surface name

m modifier name

M material name

~ tilde (end of trace marker)

If the letter 't' appears in spec, then the fields following will be printed for
every ray traced, not just the final result. If the capital letter 'T' is given
instead of 't', then all rays will be reported, including shadow testing rays to
light sources. Spawned rays are indented one tab for each level. The tilde
marker ('~') is a handy way of differentiating the final ray value from daughter
values in a traced ray tree, and usually appears right before the 't' or 'T'
output flags. E.g., -ov~TmW will emit a tilde followed by a tab at the end of
each trace, which can be easily distinguished even in binary output.

Note that there is no space between this option and its argument.

-te mod Append mod to the trace exclude list, so that it will not be reported by the
trace option (-o*t*). Any ray striking an object having mod as its modifier
will not be reported to the standard output with the rest of the rays being
traced. This option has no effect unless either the 't' or 'T' option has been
given as part of the output specifier. Any number of excluded modifiers may be
given, but each must appear in a separate option.

-ti mod Add mod to the trace include list, so that it will be reported by the trace
option. The program can use either an include list or an exclude list, but not
both.

-tE file Same as -te, except read modifiers to be excluded from file. The RAYPATH
environment variable determines which directories are searched for this file.
The modifier names are separated by white space in the file.

-tI file Same as -ti, except read modifiers to be included from file.

-i Boolean switch to compute irradiance rather than radiance values. This only
affects the final result, substituting a Lambertian surface and multiplying the
radiance by pi. Glass and other transparent surfaces are ignored during this
stage. Light sources still appear with their original radiance values, though
the -dv option (below) may be used to override this. This option is especially
useful in conjunction with ximage(1) for computing illuminance at scene points.

-u Boolean switch to control uncorrelated random sampling. When "off", a low-
discrepancy sequence is used, which reduces variance but can result in a brushed
appearance in specular highlights. When "on", pure Monte Carlo sampling is used
in all calculations.

-I Boolean switch to compute irradiance rather than radiance, with the input origin
and direction interpreted instead as measurement point and orientation.

-h Boolean switch for information header on output.

-x res Set the x resolution to res. The output will be flushed after every res input
rays if -y is set to zero. A value of one means that every ray will be flushed,
whatever the setting of -y. A value of zero means that no output flushing will
take place.

-y res Set the y resolution to res. The program will exit after res scanlines have
been processed, where a scanline is the number of rays given by the -x option,
or 1 if -x is zero. A value of zero means the program will not halt until the
end of file is reached.

If both -x and -y options are given, a resolution string is printed at the
beginning of the output. This is mostly useful for recovering image dimensions
with pvalue(1), and for creating valid Radiance picture files using the color
output format. (See the -f option, above.)

-n nproc Execute in parallel on nproc local processes. This option is incompatible with
the -P and -PP, options. Multiple processes also do not work properly with ray
tree output using any of the -o*t* options. There is no benefit from specifying
more processes than there are cores available on the system or the -x setting,
which forces a wait at each flush.

-dj frac Set the direct jittering to frac. A value of zero samples each source at
specific sample points (see the -ds option below), giving a smoother but
somewhat less accurate rendering. A positive value causes rays to be
distributed over each source sample according to its size, resulting in more
accurate penumbras. This option should never be greater than 1, and may even
cause problems (such as speckle) when the value is smaller. A warning about
aiming failure will issued if frac is too large.

-ds frac Set the direct sampling ratio to frac. A light source will be subdivided until
the width of each sample area divided by the distance to the illuminated point
is below this ratio. This assures accuracy in regions close to large area
sources at a slight computational expense. A value of zero turns source
subdivision off, sending at most one shadow ray to each light source.

-dt frac Set the direct threshold to frac. Shadow testing will stop when the potential
contribution of at least the next and at most all remaining light sources is
less than this fraction of the accumulated value. (See the -dc option below.)
The remaining light source contributions are approximated statistically. A
value of zero means that all light sources will be tested for shadow.

-dc frac Set the direct certainty to frac. A value of one guarantees that the absolute
accuracy of the direct calculation will be equal to or better than that given in
the -dt specification. A value of zero only insures that all shadow lines
resulting in a contrast change greater than the -dt specification will be
calculated.

-dr N Set the number of relays for secondary sources to N. A value of 0 means that
secondary sources will be ignored. A value of 1 means that sources will be made
into first generation secondary sources; a value of 2 means that first
generation secondary sources will also be made into second generation secondary
sources, and so on.

-dp D Set the secondary source presampling density to D. This is the number of
samples per steradian that will be used to determine ahead of time whether or
not it is worth following shadow rays through all the reflections and/or
transmissions associated with a secondary source path. A value of 0 means that
the full secondary source path will always be tested for shadows if it is tested
at all.

-dv Boolean switch for light source visibility. With this switch off, sources will
be black when viewed directly although they will still participate in the direct
calculation. This option is mostly for the program mkillum(1) to avoid
inappropriate counting of light sources, but it may also be desirable in
conjunction with the -i option.

-ss samp Set the specular sampling to samp. For values less than 1, this is the degree
to which the highlights are sampled for rough specular materials. A value
greater than one causes multiple ray samples to be sent to reduce noise at a
commmesurate cost. A value of zero means that no jittering will take place, and
all reflections will appear sharp even when they should be diffuse.

-st frac Set the specular sampling threshold to frac. This is the minimum fraction of
reflection or transmission, under which no specular sampling is performed. A
value of zero means that highlights will always be sampled by tracing reflected
or transmitted rays. A value of one means that specular sampling is never used.
Highlights from light sources will always be correct, but reflections from other
surfaces will be approximated using an ambient value. A sampling threshold
between zero and one offers a compromise between image accuracy and rendering
time.

-bv Boolean switch for back face visibility. With this switch off, back faces of
opaque objects will be invisible to all rays. This is dangerous unless the
model was constructed such that all surface normals on opaque objects face
outward. Although turning off back face visibility does not save much
computation time under most circumstances, it may be useful as a tool for scene
debugging, or for seeing through one-sided walls from the outside. This option
has no effect on transparent or translucent materials.

-av red grn blu
Set the ambient value to a radiance of red grn blu . This is the final value
used in place of an indirect light calculation. If the number of ambient
bounces is one or greater and the ambient value weight is non-zero (see -aw and
-ab below), this value may be modified by the computed indirect values to
improve overall accuracy.

-aw N Set the relative weight of the ambient value given with the -av option to N. As
new indirect irradiances are computed, they will modify the default ambient
value in a moving average, with the specified weight assigned to the initial
value given on the command and all other weights set to 1. If a value of 0 is
given with this option, then the initial ambient value is never modified. This
is the safest value for scenes with large differences in indirect contributions,
such as when both indoor and outdoor (daylight) areas are visible.

-ab N Set the number of ambient bounces to N. This is the maximum number of diffuse
bounces computed by the indirect calculation. A value of zero implies no
indirect calculation.

-ar res Set the ambient resolution to res. This number will determine the maximum
density of ambient values used in interpolation. Error will start to increase
on surfaces spaced closer than the scene size divided by the ambient resolution.
The maximum ambient value density is the scene size times the ambient accuracy
(see the -aa option below) divided by the ambient resolution. The scene size
can be determined using getinfo(1) with the -d option on the input octree.

-aa acc Set the ambient accuracy to acc. This value will approximately equal the error
from indirect illuminance interpolation. A value of zero implies no
interpolation.

-ad N Set the number of ambient divisions to N. The error in the Monte Carlo
calculation of indirect illuminance will be inversely proportional to the square
root of this number. A value of zero implies no indirect calculation.

-as N Set the number of ambient super-samples to N. Super-samples are applied only to
the ambient divisions which show a significant change.

-af fname Set the ambient file to fname. This is where indirect illuminance will be
stored and retrieved. Normally, indirect illuminance values are kept in memory
and lost when the program finishes or dies. By using a file, different
invocations can share illuminance values, saving time in the computation. The
ambient file is in a machine-independent binary format which can be examined
with lookamb(1).

The ambient file may also be used as a means of communication and data sharing
between simultaneously executing processes. The same file may be used by
multiple processes, possibly running on different machines and accessing the
file via the network (ie. nfs(4)). The network lock manager lockd(8) is used
to insure that this information is used consistently.

If any calculation parameters are changed or the scene is modified, the old
ambient file should be removed so that the calculation can start over from
scratch. For convenience, the original ambient parameters are listed in the
header of the ambient file. Getinfo(1) may be used to print out this
information.

-ae mod Append mod to the ambient exclude list, so that it will not be considered during
the indirect calculation. This is a hack for speeding the indirect computation
by ignoring certain objects. Any object having mod as its modifier will get the
default ambient level rather than a calculated value. Any number of excluded
modifiers may be given, but each must appear in a separate option.

-ai mod Add mod to the ambient include list, so that it will be considered during the
indirect calculation. The program can use either an include list or an exclude
list, but not both.

-aE file Same as -ae, except read modifiers to be excluded from file. The RAYPATH
environment variable determines which directories are searched for this file.
The modifier names are separated by white space in the file.

-aI file Same as -ai, except read modifiers to be included from file.

-me rext gext bext
Set the global medium extinction coefficient to the indicated color, in units of
1/distance (distance in world coordinates). Light will be scattered or absorbed
over distance according to this value. The ratio of scattering to total
scattering plus absorption is set by the albedo parameter, described below.

-ma ralb galb balb
Set the global medium albedo to the given value between 0 0 0 and 1 1 1. A zero
value means that all light not transmitted by the medium is absorbed. A unitary
value means that all light not transmitted by the medium is scattered in some
new direction. The isotropy of scattering is determined by the Heyney-
Greenstein parameter, described below.

-mg gecc Set the medium Heyney-Greenstein eccentricity parameter to gecc. This parameter
determines how strongly scattering favors the forward direction. A value of 0
indicates perfectly isotropic scattering. As this parameter approaches 1,
scattering tends to prefer the forward direction.

-ms sampdist
Set the medium sampling distance to sampdist, in world coordinate units. During
source scattering, this will be the average distance between adjacent samples.
A value of 0 means that only one sample will be taken per light source within a
given scattering volume.

-lr N Limit reflections to a maximum of N, if N is a positive integer. If N is zero
or negative, then Russian roulette is used for ray termination, and the -lw
setting (below) must be positive. If N is a negative integer, then this sets
the upper limit of reflections past which Russian roulette will be used. In
scenes with dielectrics and total internal reflection, a setting of 0 (no limit)
may cause a stack overflow.

-lw frac Limit the weight of each ray to a minimum of frac. During ray-tracing, a record
is kept of the estimated contribution (weight) a ray would have in the image.
If this weight is less than the specified minimum and the -lr setting (above) is
positive, the ray is not traced. Otherwise, Russian roulette is used to
continue rays with a probability equal to the ray weight divided by the given
frac.

-ld Boolean switch to limit ray distance. If this option is set, then rays will
only be traced as far as the magnitude of each direction vector. Otherwise,
vector magnitude is ignored and rays are traced to infinity.

-e efile Send error messages and progress reports to efile instead of the standard error.

-w Boolean switch to suppress warning messages.

-P pfile Execute in a persistent mode, using pfile as the control file. Persistent
execution means that after reaching end-of-file on its input, rtrace will fork a
child process that will wait for another rtrace command with the same -P option
to attach to it. (Note that since the rest of the command line options will be
those of the original invocation, it is not necessary to give any arguments
besides -P for subsequent calls.) Killing the process is achieved with the
kill(1) command. (The process ID in the first line of pfile may be used to
identify the waiting rtrace process.) This option may be used with the -fr
option of pinterp(1) to avoid the cost of starting up rtrace many times.

-PP pfile Execute in continuous-forking persistent mode, using pfile as the control file.
The difference between this option and the -P option described above is the
creation of multiple duplicate processes to handle any number of attaches. This
provides a simple and reliable mechanism of memory sharing on most
multiprocessing platforms, since the fork(2) system call will share memory on a
copy-on-write basis.

EXAMPLES


To compute radiance values for the rays listed in samples.inp:

rtrace -ov scene.oct < samples.inp > radiance.out

To compute illuminance values at locations selected with the 't' command of ximage(1):

ximage scene.hdr | rtrace -h -x 1 -i scene.oct | rcalc -e '$1=47.4*$1+120*$2+11.6*$3'

To record the object identifier corresponding to each pixel in an image:

vwrays -fd scene.hdr | rtrace -fda `vwrays -d scene.hdr` -os scene.oct

To compute an image with an unusual view mapping:

cnt 480 640 | rcalc -e 'xr:640;yr:480' -f unusual_view.cal | rtrace -x 640 -y 480 -fac
scene.oct > unusual.hdr

ENVIRONMENT


RAYPATH the directories to check for auxiliary files.

Use rtrace online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

Linux commands

Ad