t.vect.univargrass - Online in the Cloud

This is the command t.vect.univargrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


t.vect.univar - Calculates univariate statistics of attributes for each registered vector
map of a space time vector dataset

KEYWORDS


temporal, statistics, vector, time

SYNOPSIS


t.vect.univar
t.vect.univar --help
t.vect.univar [-es] input=name [output=name] [layer=string] column=name
[twhere=sql_query] [where=sql_query] [type=string] [separator=character]
[--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:
-e
Calculate extended statistics

-s
Suppress printing of column names

--overwrite
Allow output files to overwrite existing files

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of the input space time vector dataset

output=name
Name for output file

layer=string
Layer number or name
Vector features can have category values in different layers. This number determines
which layer to use. When used with direct OGR access this is the layer name.
Default: 1

column=name [required]
Name of attribute column

twhere=sql_query
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS
framework
Example: start_time > ’2001-01-01 12:30:00’

where=sql_query
WHERE conditions of SQL statement without ’where’ keyword
Example: income < 1000 and inhab >= 10000

type=string
Input feature type
Options: point, line, boundary, centroid, area
Default: point

separator=character
Field separator character between the output columns
Special characters: pipe, comma, space, tab, newline
Default: pipe

DESCRIPTION


The module t.vect.univar computes univariate statistics of a space time vector dataset
based on a single attribute row.

EXAMPLE


The example is based on the t.vect.observe.strds example; so create the precip_stations
space time vector dataset and after run the following command:
t.vect.univar input=precip_stations col=month
id|start|end|n|nmissing|nnull|min|max|range|mean|mean_abs|population_stddev|population_variance|population_coeff_variation|sample_stddev|sample_variance|kurtosis|skewness
precip_stations_monthly@climate_2009_2012|2009-01-01 00:00:00|2009-02-01 00:00:00|132|0|4|-2.31832|7.27494|9.59326|3.44624|3.5316|1.79322|3.21564|0.520341|1.80005|3.24019|0.484515|-0.338519
precip_stations_monthly@climate_2009_2012|2009-02-01 00:00:00|2009-03-01 00:00:00|132|0|4|-0.654152|7.90613|8.56028|5.47853|5.48844|1.73697|3.01708|0.317051|1.74359|3.04011|0.875252|-1.0632
....
precip_stations_monthly@climate_2009_2012|2012-10-01 00:00:00|2012-11-01 00:00:00|132|0|4|9.67596|18.4654|8.78945|14.945|14.945|1.90659|3.6351|0.127574|1.91386|3.66285|-0.0848967|-0.700833
precip_stations_monthly@climate_2009_2012|2012-11-01 00:00:00|2012-12-01 00:00:00|132|0|4|3.56755|10.6211|7.05357|7.72153|7.72153|1.33684|1.78715|0.173132|1.34194|1.8008|0.90434|-0.863935
precip_stations_monthly@climate_2009_2012|2012-12-01 00:00:00|2013-01-01 00:00:00|132|0|4|3.04325|11.6368|8.5935|8.20147|8.20147|1.78122|3.17275|0.217183|1.78801|3.19697|-0.177991|-0.501295

Use t.vect.univargrass online using onworks.net services



Latest Linux & Windows online programs