v.surf.rstgrass - Online in the Cloud

This is the command v.surf.rstgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


v.surf.rst - Performs surface interpolation from vector points map by splines.
Spatial approximation and topographic analysis from given point or isoline data in vector
format to floating point raster format using regularized spline with tension.

KEYWORDS


vector, surface, interpolation, 3D

SYNOPSIS


v.surf.rst
v.surf.rst --help
v.surf.rst [-ctd] input=name [layer=string] [zcolumn=name] [where=sql_query]
[elevation=name] [slope=name] [aspect=name] [pcurvature=name] [tcurvature=name]
[mcurvature=name] [deviations=name] [cvdev=name] [treeseg=name] [overwin=name]
[mask=name] [tension=float] [smooth=float] [smooth_column=string] [segmax=integer]
[npmin=integer] [dmin=float] [dmax=float] [zscale=float] [theta=float]
[scalex=float] [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:
-c
Perform cross-validation procedure without raster approximation

-t
Use scale dependent tension

-d
Output partial derivatives instead of topographic parameters

--overwrite
Allow output files to overwrite existing files

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of input vector map
Or data source for direct OGR access

layer=string
Layer number or name
Vector features can have category values in different layers. This number determines
which layer to use. When used with direct OGR access this is the layer name.
Default: 1

zcolumn=name
Name of the attribute column with values to be used for approximation
If not given and input is 2D vector map then category values are used. If input is 3D
vector map then z-coordinates are used.

where=sql_query
WHERE conditions of SQL statement without ’where’ keyword
Example: income < 1000 and inhab >= 10000

elevation=name
Name for output surface elevation raster map

slope=name
Name for output slope raster map

aspect=name
Name for output aspect raster map

pcurvature=name
Name for output profile curvature raster map

tcurvature=name
Name for output tangential curvature raster map

mcurvature=name
Name for output mean curvature raster map

deviations=name
Name for output deviations vector point map

cvdev=name
Name for output cross-validation errors vector point map

treeseg=name
Name for output vector map showing quadtree segmentation

overwin=name
Name for output vector map showing overlapping windows

mask=name
Name of raster map used as mask

tension=float
Tension parameter
Default: 40.

smooth=float
Smoothing parameter

smooth_column=string
Name of the attribute column with smoothing parameters

segmax=integer
Maximum number of points in a segment
Default: 40

npmin=integer
Minimum number of points for approximation in a segment (>segmax)
Default: 300

dmin=float
Minimum distance between points (to remove almost identical points)

dmax=float
Maximum distance between points on isoline (to insert additional points)

zscale=float
Conversion factor for values used for approximation
Default: 1.0

theta=float
Anisotropy angle (in degrees counterclockwise from East)

scalex=float
Anisotropy scaling factor

DESCRIPTION


v.surf.rst program performs spatial approximation based on z-values (input vector map is
3D and zcolumn parameter is not given), categories (input vector map is 2D and zcolumn
parameter is not given), or attributes (zcolumn parameter is given) of point or isoline
data given in a vector map named input to grid cells in the output raster map elevation
representing a surface.

As an option, simultaneously with approximation, topographic parameters slope, aspect,
profile curvature (measured in the direction of the steepest slope), tangential curvature
(measured in the direction of a tangent to contour line) or mean curvature are computed
and saved as raster maps specified by the options slope, aspect, pcurv, tcurv, mcurv
respectively. If -d flag is set, v.surf.rst outputs partial derivatives fx,fy,fxx, fyy,fxy
instead of slope, aspect, profile, tangential and mean curvatures respectively. If the
input vector map have time stamp, the program creates time stamp for all output maps.

User can either use r.maskto set a mask or specify a raster map in mask option, which will
be used as a mask. The approximation is skipped for cells which have zero or NULL value in
mask. NULL values will be assigned to these cells in all output raster maps. Data points
are checked for identical points and points that are closer to each other than the given
dmin are removed. If sparsely digitized contours or isolines are used as input,
additional points are computed between each 2 points on a line if the distance between
them is greater than specified dmax. Parameter zmult allows user to rescale the values
used for approximation (useful e.g. for transformation of elevations given in feet to
meters, so that the proper values of slopes and curvatures can be computed).

Regularized spline with tension is used for the approximation. The tension parameter tunes
the character of the resulting surface from thin plate to membrane. Smoothing parameter
smooth controls the deviation between the given points and the resulting surface and it
can be very effective in smoothing noisy data while preserving the geometrical properties
of the surface. With the smoothing parameter set to zero (smooth=0) the resulting surface
passes exactly through the data points (spatial interpolation is performed). When
smoothing parameter is used, it is also possible to output a vector point map deviations
containing deviations of the resulting surface from the given data.

If the number of given points is greater than segmax, segmented processing is used. The
region is split into quadtree-based rectangular segments, each having less than segmax
points and approximation is performed on each segment of the region. To ensure smooth
connection of segments the approximation function for each segment is computed using the
points in the given segment and the points in its neighborhood which are in the
rectangular window surrounding the given segment. The number of points taken for
approximation is controlled by npmin, the value of which must be larger than segmax. User
can choose to output vector maps treeseg and overwin which represent the quad tree used
for segmentation and overlapping neighborhoods from which additional points for
approximation on each segment were taken.

Predictive error of surface approximation for given parameters can be computed using the
-c flag. A crossvalidation procedure is then performed using the data given in the vector
map input and the estimated predictive errors are stored in the vector point map cvdev.
When using this flag, no raster output maps are computed. Anisotropic surfaces can be
interpolated by setting anisotropy angle theta and scaling factor scalex. The program
writes values of selected input and internally computed parameters to the history file of
raster map elevation.

The user must run g.region before the program to set the region and resolution for
approximation.

NOTES


v.surf.rst uses regularized spline with tension for approximation from vector data. The
module does not require input data with topology, therefore both level1 (no topology) and
level2 (with topology) vector point data are supported. Additional points are used for
approximation between each 2 points on a line if the distance between them is greater than
specified dmax. If dmax is small (less than cell size) the number of added data points can
be vary large and slow down approximation significantly. The implementation has a
segmentation procedure based on quadtrees which enhances the efficiency for large data
sets. Special color tables are created by the program for output raster maps.

Topographic parameters are computed directly from the approximation function so that the
important relationships between these parameters are preserved. The equations for
computation of these parameters and their interpretation is described in Mitasova and
Hofierka, 1993 or Neteler and Mitasova, 2004). Slopes and aspect are computed in degrees
(0-90 and 1-360 respectively). The aspect raster map has value 0 assigned to flat areas
(with slope less than 0.1%) and to singular points with undefined aspect. Aspect points
downslope and is 90 to the North, 180 to the West, 270 to the South and 360 to the East,
the values increase counterclockwise. Curvatures are positive for convex and negative for
concave areas. Singular points with undefined curvatures have assigned zero values.

Tension and smoothing allow user to tune the surface character. For most landscape scale
applications the default values should provide adequate results. The program gives
warning when significant overshoots appear in the resulting surface and higher tension or
smoothing should be used.

To select parameters that will produce a surface with desired properties, it is useful to
know that the method is scale dependent and the tension works as a rescaling parameter
(high tension "increases the distances between the points" and reduces the range of impact
of each point, low tension "decreases the distance" and the points influence each other
over longer range). Surface with tension set too high behaves like a membrane (rubber
sheet stretched over the data points) with peak or pit ("crater") in each given point and
everywhere else the surface goes rapidly to trend. If digitized contours are used as input
data, high tension can cause artificial waves along contours. Lower tension and higher
smoothing is suggested for such a case.

Surface with tension set too low behaves like a stiff steel plate and overshoots can
appear in areas with rapid change of gradient and segmentation can be visible. Increase in
tension should solve the problems.

There are two options how tension can be applied in relation to dnorm (dnorm rescales the
coordinates depending on the average data density so that the size of segments with
segmax=40 points is around 1 - this ensures the numerical stability of the computation):

1 Default: the given tension is applied to normalized data (x/dnorm), that means that
the distances are multiplied (rescaled) by tension/dnorm. If density of points is
changed, e.g., by using higher dmin, the dnorm changes and tension needs to be
changed too to get the same result. Because the tension is applied to normalized
data its suitable value is usually within the 10-100 range and does not depend on
the actual scale (distances) of the original data (which can be km for regional
applications or cm for field experiments).

2 Flag-t: The given tension is applied to un-normalized data (rescaled tension =
tension*dnorm/1000 is applied to normalized data (x/dnorm) and therefore dnorm
cancels out) so here tension truly works as a rescaling parameter. For regional
applications with distances between points in km. the suitable tension can be 500
or higher, for detailed field scale analysis it can be 0.1. To help select how much
the data need to be rescaled the program writes dnorm and rescaled tension
fi=tension*dnorm/1000 at the beginning of the program run. This rescaled tension
should be around 20-30. If it is lower or higher, the given tension parameter
should be changed accordingly.

The default is a recommended choice, however for the applications where the user needs to
change density of data and preserve the approximation character the -t flag can be
helpful.

Anisotropic data (e.g. geologic phenomena) can be interpolated using theta and scalex
defining orientation and ratio of the perpendicular axes put on the longest/shortest side
of the feature, respectively. Theta is measured in degrees from East, counterclockwise.
Scalex is a ratio of axes sizes. Setting scalex in the range 0-1, results in a pattern
prolonged in the direction defined by theta. Scalex value 0.5 means that modeled feature
is approximately 2 times longer in the direction of theta than in the perpendicular
direction. Scalex value 2 means that axes ratio is reverse resulting in a pattern
perpendicular to the previous example. Please note that anisotropy option has not been
extensively tested and may include bugs (for example, topographic parameters may not be
computed correctly) - if there are problems, please report to GRASS bugtracker (accessible
from http://grass.osgeo.org/).

For data with values changing over several magnitudes (sometimes the concentration or
density data) it is suggested to interpolate the log of the values rather than the
original ones.

v.surf.rst checks the numerical stability of the algorithm by computing the values in
given points, and prints the root mean square deviation (rms) found into the history file
of raster map elevation. For computation with smoothing set to 0, rms should be 0.
Significant increase in tension is suggested if the rms is unexpectedly high for this
case. With smoothing parameter greater than zero the surface will not pass exactly through
the data points and the higher the parameter the closer the surface will be to the trend.
The rms then represents a measure of smoothing effect on data. More detailed analysis of
smoothing effects can be performed using the output deviations option.

v.surf.rst also writes the values of parameters used in computation into the comment part
of history file elevation as well as the following values which help to evaluate the
results and choose the suitable parameters: minimum and maximum z values in the data file
(zmin_data, zmax_data) and in the interpolated raster map (zmin_int, zmax_int), rescaling
parameter used for normalization (dnorm), which influences the tension.

If visible connection of segments appears, the program should be rerun with higher npmin
to get more points from the neighborhood of given segment and/or with higher tension.

When the number of points in a vector map is not too large (less than 800), the user can
skip segmentation by setting segmax to the number of data points or segmax=700.

v.surf.rst gives warning when user wants to interpolate outside the rectangle given by
minimum and maximum coordinates in the vector map, zoom into the area where the given data
are is suggested in this case.

When a mask is used, the program takes all points in the given region for approximation,
including those in the area which is masked out, to ensure proper approximation along the
border of the mask. It therefore does not mask out the data points, if this is desirable,
it must be done outside v.surf.rst.

Cross validation procedure
The "optimal" approximation parameters for given data can be found using a
cross-validation (CV) procedure (-cflag). The CV procedure is based on removing one input
data point at a time, performing the approximation for the location of the removed point
using the remaining data points and calculating the difference between the actual and
approximated value for the removed data point. The procedure is repeated until every data
point has been, in turn, removed. This form of CV is also known as the "leave-one-out" or
"jack-knife" method (Hofierka et al., 2002; Hofierka, 2005). The differences (residuals)
are then stored in the cvdev output vector map. Please note that during the CV procedure
no other output maps can be set, the approximation is performed only for locations defined
by input data. To find "optimal parameters", the CV procedure must be iteratively
performed for all reasonable combinations of the approximation parameters with small
incremental steps (e.g. tension, smoothing) in order to find a combination with minimal
statistical error (also called predictive error) defined by root mean squared error
(RMSE), mean absolute error (MAE) or other error characteristics. A script with loops for
tested RST parameters can do the job, necessary statistics can be calculated using e.g.
v.univar. It should be noted that crossvalidation is a time-consuming procedure, usually
reasonable for up to several thousands of points. For larger data sets, CV should be
applied to a representative subset of the data. The cross-validation procedure works well
only for well-sampled phenomena and when minimizing the predictive error is the goal. The
parameters found by minimizing the predictive (CV) error may not not be the best for for
poorly sampled phenomena (result could be strongly smoothed with lost details and
fluctuations) or when significant noise is present that needs to be smoothed out.

EXAMPLE


Using the where parameter, the interpolation can be limited to use only a subset of the
input vectors.

Spearfish example (we simulate randomly distributed elevation measures):
g.region raster=elevation.10m -p
# random elevation extraction
r.random elevation.10m vector_output=elevrand n=200
v.info -c elevrand
v.db.select elevrand
# interpolation based on all points
v.surf.rst elevrand zcol=value elevation=elev_full
r.colors elev_full rast=elevation.10m
d.rast elev_full
d.vect elevrand
# interpolation based on subset of points (only those over 1300m/asl)
v.surf.rst elevrand zcol=value elevation=elev_partial where="value > 1300"
r.colors elev_partial rast=elevation.10m
d.rast elev_partial
d.vect elevrand where="value > 1300"

REFERENCES


· Mitasova, H., Mitas, L. and Harmon, R.S., 2005, Simultaneous spline approximation
and topographic analysis for lidar elevation data in open source GIS, IEEE GRSL 2
(4), 375- 379.

· Hofierka, J., 2005, Interpolation of Radioactivity Data Using Regularized Spline
with Tension. Applied GIS, Vol. 1, No. 2, pp. 16-01 to 16-13. DOI:
10.2104/ag050016

· Hofierka J., Parajka J., Mitasova H., Mitas L., 2002, Multivariate Interpolation
of Precipitation Using Regularized Spline with Tension. Transactions in GIS 6(2),
pp. 135-150.

· H. Mitasova, L. Mitas, B.M. Brown, D.P. Gerdes, I. Kosinovsky, 1995, Modeling
spatially and temporally distributed phenomena: New methods and tools for GRASS
GIS. International Journal of GIS, 9 (4), special issue on Integrating GIS and
Environmental modeling, 433-446.

· Mitasova, H. and Mitas, L., 1993: Interpolation by Regularized Spline with
Tension: I. Theory and Implementation, Mathematical Geology ,25, 641-655.

· Mitasova, H. and Hofierka, J., 1993: Interpolation by Regularized Spline with
Tension: II. Application to Terrain Modeling and Surface Geometry Analysis,
Mathematical Geology 25, 657-667.

· Mitas, L., and Mitasova H., 1988, General variational approach to the
approximation problem, Computers and Mathematics with Applications, v.16, p.
983-992.

· Neteler, M. and Mitasova, H., 2008, Open Source GIS: A GRASS GIS Approach, 3rd
Edition, Springer, New York, 406 pages.

· Talmi, A. and Gilat, G., 1977 : Method for Smooth Approximation of Data, Journal
of Computational Physics, 23, p.93-123.

· Wahba, G., 1990, : Spline Models for Observational Data, CNMS-NSF Regional
Conference series in applied mathematics, 59, SIAM, Philadelphia, Pennsylvania.

Use v.surf.rstgrass online using onworks.net services



Latest Linux & Windows online programs