EnglishFrenchSpanish

OnWorks favicon

fundisp - Online in the Cloud

Run fundisp in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command fundisp that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


fundisp - display data in a Funtools data file

SYNOPSIS


fundisp [-f format] [-l] [-n] [-T] <iname> [columns⎪bitpix=n]

OPTIONS


-f # format string for display
-l # display image as a list containing the columns X, Y, VAL
-n # don't output header
-F [c] # use specified character as column separator (def: space)
-T # output in rdb/starbase format (tab separators)

DESCRIPTION


fundisp displays the data in the specified FITS Extension and/or Image Section of a FITS
file, or in a Section of a non-FITS array or raw event file.

The first argument to the program specifies the FITS input image, array, or raw event file
to display. If "stdin" is specified, data are read from the standard input. Use Funtools
Bracket Notation to specify FITS extensions, image sections, and filters.

If the data being displayed are columns (either in a FITS binary table or a raw event
file), the individual rows are listed. Filters can be added using bracket notation. Thus:

[sh] fundisp "test.ev[time-(int)time>.15]"
X Y PHA PI TIME DX DY
------- ------- ------- --------- ---------------- ---------- ----------
10 8 10 8 17.1600 8.50 10.50
9 9 9 9 17.1600 9.50 9.50
10 9 10 9 18.1600 9.50 10.50
10 9 10 9 18.1700 9.50 10.50
8 10 8 10 17.1600 10.50 8.50
9 10 9 10 18.1600 10.50 9.50
9 10 9 10 18.1700 10.50 9.50
10 10 10 10 19.1600 10.50 10.50
10 10 10 10 19.1700 10.50 10.50
10 10 10 10 19.1800 10.50 10.50

[NB: The FITS binary table test file test.ev, as well as the FITS image test.fits, are
contained in the funtools funtest directory.]

When a table is being displayed using fundisp, a second optional argument can be used to
specify the columns to display. For example:

[sh] fundisp "test.ev[time-(int)time>=.99]" "x y time"
X Y TIME
-------- -------- ---------------------
5 -6 40.99000000
4 -5 59.99000000
-1 0 154.99000000
-2 1 168.99000000
-3 2 183.99000000
-4 3 199.99000000
-5 4 216.99000000
-6 5 234.99000000
-7 6 253.99000000

The special column $REGION can be specified to display the region id of each row:

[sh $] fundisp "test.ev[time-(int)time>=.99&&annulus(0 0 0 10 n=3)]" 'x y time $REGION'
X Y TIME REGION
-------- -------- --------------------- ----------
5 -6 40.99000000 3
4 -5 59.99000000 2
-1 0 154.99000000 1
-2 1 168.99000000 1
-3 2 183.99000000 2
-4 3 199.99000000 2
-5 4 216.99000000 2
-6 5 234.99000000 3
-7 6 253.99000000 3

Here only rows with the proper fractional time and whose position also is within one of
the three annuli are displayed.

Columns can be excluded from display using a minus sign before the column:

[sh $] fundisp "test.ev[time-(int)time>=.99]" "-time"
X Y PHA PI DX DY
-------- -------- -------- ---------- ----------- -----------
5 -6 5 -6 5.50 -6.50
4 -5 4 -5 4.50 -5.50
-1 0 -1 0 -1.50 0.50
-2 1 -2 1 -2.50 1.50
-3 2 -3 2 -3.50 2.50
-4 3 -4 3 -4.50 3.50
-5 4 -5 4 -5.50 4.50
-6 5 -6 5 -6.50 5.50
-7 6 -7 6 -7.50 6.50

All columns except the time column are displayed.

The special column $N can be specified to display the ordinal value of each row. Thus,
continuing the previous example:

fundisp "test.ev[time-(int)time>=.99]" '-time $n'
X Y PHA PI DX DY N
------- -------- -------- ---------- ----------- ----------- ----------
5 -6 5 -6 5.50 -6.50 337
4 -5 4 -5 4.50 -5.50 356
-1 0 -1 0 -1.50 0.50 451
-2 1 -2 1 -2.50 1.50 465
-3 2 -3 2 -3.50 2.50 480
-4 3 -4 3 -4.50 3.50 496
-5 4 -5 4 -5.50 4.50 513
-6 5 -6 5 -6.50 5.50 531
-7 6 -7 6 -7.50 6.50 550

Note that the column specification is enclosed in single quotes to protect '$n' from begin
expanded by the shell.

In general, the rules for activating and de-activating columns are:

· If only exclude columns are specified, then all columns but the exclude columns will
be activated.

· If only include columns are specified, then only the specified columns are activated.

· If a mixture of include and exclude columns are specified, then all but the exclude
columns will be active; this last case is ambiguous and the rule is arbitrary.

In addition to specifying columns names explicitly, the special symbols + and - can be
used to activate and de-activate all columns. This is useful if you want to activate the
$REGION column along with all other columns. According to the rules, the syntax "$REGION"
only activates the region column and de-activates the rest. Use "+ $REGION" to activate
all columns as well as the region column.

If the data being displayed are image data (either in a FITS primary image, a FITS image
extension, or an array file), an mxn pixel display is produced, where m and n are the
dimensions of the image. By default, pixel values are displayed using the same data type
as in the file. However, for integer data where the BSCALE and BZERO header parameters are
present, the data is displayed as floats. In either case, the display data type can be
overridden using an optional second argument of the form:

bitpix=n

where n is 8,16,32,-32,-64, for unsigned char, short, int, float and double, respectively.

Of course, running fundisp on anything but the smallest image usually results in a display
whose size makes it unreadable. Therefore, one can uses bracket notation (see below) to
apply section and/or blocking to the image before generating a display. For example:

[sh] fundisp "test.fits[2:6,2:7]" bitpix=-32
2 3 4 5 6
---------- ---------- ---------- ---------- ----------
2: 3.00 4.00 5.00 6.00 7.00
3: 4.00 5.00 6.00 7.00 8.00
4: 5.00 6.00 7.00 8.00 9.00
5: 6.00 7.00 8.00 9.00 10.00
6: 7.00 8.00 9.00 10.00 11.00
7: 8.00 9.00 10.00 11.00 12.00

Note that is is possible to display a FITS binary table as an image simply by passing the
table through funimage first:

[sh] ./funimage test.ev stdout ⎪ fundisp "stdin[2:6,2:7]" bitpix=8
2 3 4 5 6
------- ------- ------- ------- -------
2: 3 4 5 6 7
3: 4 5 6 7 8
4: 5 6 7 8 9
5: 6 7 8 9 10
6: 7 8 9 10 11
7: 8 9 10 11 12

If the -l (list) switch is used, then an image is displayed as a list containing the
columns: X, Y, VAL. For example:

fundisp -l "test1.fits[2:6,2:7]" bitpix=-32
X Y VAL
---------- ---------- -----------
2 2 6.00
3 2 1.00
4 2 1.00
5 2 1.00
6 2 1.00
2 3 1.00
3 3 5.00
4 3 1.00
5 3 1.00
6 3 1.00
2 4 1.00
3 4 1.00
4 4 4.00
5 4 1.00
6 4 1.00
2 5 1.00
3 5 1.00
4 5 1.00
5 5 3.00
6 5 1.00
2 6 1.00
3 6 1.00
4 6 1.00
5 6 1.00
6 6 2.00
2 7 1.00
3 7 1.00
4 7 1.00
5 7 1.00
6 7 1.00

If the -n (nohead) switch is used, then no header is output for tables. This is useful,
for example, when fundisp output is being directed into gnuplot.

The fundisp program uses a default set of display formats:

datatype TFORM format
-------- ----- --------
double D "%21.8f"
float E "%11.2f"
int J "%10d"
short I "%8d"
byte B "%6d"
string A "%12.12s"
bits X "%8x"
logical L "%1x"

Thus, the default display of 1 double and 2 shorts gives:

[sh] fundisp snr.ev "time x y"

TIME X Y
--------------------- -------- --------
79494546.56818075 546 201
79488769.94469175 548 201
...

You can change the display format for individual columns or for all columns of a given
data types by means of the -f switch. The format string that accompanies -f is a space-
delimited list of keyword=format values. The keyword values can either be column names
(in which case the associated format pertains only to that column) or FITS table TFORM
specifiers (in which case the format pertains to all columns having that data type). For
example, you can change the double and short formats for all columns like this:

[sh] fundisp -f "D=%22.11f I=%3d" snr.ev "time x y"

TIME X Y
---------------------- --- ---
79494546.56818075478 546 201
79488769.94469174743 548 201
...

Alternatively, you can change the format of the time and x columns like this:

[sh] fundisp -f "time=%22.11f x=%3d" snr.ev "time x y"

TIME X Y
---------------------- --- --------
79494546.56818075478 546 201
79488769.94469174743 548 201
...

Note that there is a potential conflict if a column has the same name as one of the TFORM
specifiers. In the examples above, the the "X" column in the table has the same name as
the X (bit) datatype. To resolve this conflict, the format string is processed such that
TFORM datatype specifiers are checked for first, using a case-sensitive comparison. If the
specified format value is not an upper case TFORM value, then a case-insensitive check is
made on the column name. This means that, in the examples above, "X=%3d" will refer to
the X (bit) datatype, while "x=%3d" will refer to the X column:

[sh] fundisp -f "X=%3d" snr.ev "x y"

X Y
-------- --------
546 201
548 201
...

[sh] fundisp -f "x=%3d" snr.ev "x y"

X Y
--- --------
546 201
548 201
...

As a rule, therefore, it is best always to specify the column name in lower case and TFORM
data types in upper case.

The -f [format] will change the format for a single execution of fundisp. You also can use
the FUN_FORMAT envronment variable to change the format for all invocations of fundisp.
The format of this environment variable's value is identical to that used with the -f
switch. This global value can be overridden in individual cases by use of the -f [format]
switch.

Caveats: Please also note that it is the user's responsibility to match the format
specifier to the column data type correctly. Also note that, in order to maintain visual
alignment between names and columns, the column name will be truncated (on the left) if
the format width is less than the length of the name. However, truncation is not performed
if the output is in RDB format (using the -T switch).

[An older-style format string is supported but deprecated. It consists of space-delimited
C format statements for all data types, specified in the following order:

double float int short byte string bit.

This order of the list is based on the assumption that people generally will want to
change the float formats.

If "-" is entered instead of a format statement for a given data type, the default format
is used. Also, the format string can be terminated without specifying all formats, and
defaults will be used for the rest of the list. Note that you must supply a minimum field
width, i.e., "%6d" and "%-6d" are legal, "%d" is not legal.

By using -f [format], you can change the double and short formats like this:

[sh] fundisp -f "22.11f - - 3d" snr.ev "time x y"

TIME X Y
---------------------- --- ---
79494546.56818075478 546 201
79488769.94469174743 548 201
...

NB: This format is deprecated and will be removed in a future release.]

The -F[c] switch can be used to specify a (single-character) column separator (where the
default is a space). Note that column formatting will almost certainly also add spaces to
pad individual columns to the required width. These can be removed with a program such as
sed, at the cost of generating unaligned columns. For example:

fundisp -F',' snr.ev'[cir 512 512 .1]'
X, Y, PHA, PI, TIME, DX, DY
512, 512, 6, 7, 79493997.45854475, 578, 574
512, 512, 8, 9, 79494575.58943175, 579, 573
512, 512, 5, 6, 79493631.03866175, 578, 575
512, 512, 5, 5, 79493290.86521725, 578, 575
512, 512, 8, 9, 79493432.00990875, 579, 573

fundisp -F',' snr.ev'[cir 512 512 .1]' ⎪ sed 's/ *, */,/g'
X,Y,PHA,PI,TIME,DX,DY
512,512,6,7,79493997.45854475,578,574
512,512,8,9,79494575.58943175,579,573
512,512,5,6,79493631.03866175,578,575
512,512,5,5,79493290.86521725,578,575
512,512,8,9,79493432.00990875,579,573

fundisp -f "x=%3d y=%3d pi=%1d pha=%1d time=%20.11f dx=%3d dy=%3d" -F',' snr.ev'[cir 512
512 .1]' ⎪ sed 's/ *, */,/g'
X,Y,A,I,TIME,DX,DY ---,---,-,-,--------------------,---,---
512,512,6,7,79493997.45854474604,578,574 512,512,8,9,79494575.58943174779,579,573
512,512,5,6,79493631.03866174817,578,575 512,512,5,5,79493290.86521725357,578,575
512,512,8,9,79493432.00990875065,579,573

If the -T (rdb table) switch is used, the output will conform to starbase/rdb data base
format: tabs will be inserted between columns rather than spaces. This format is not
available when displaying image pixels (except in conjunction with the -l switch).

Finally, note that fundisp can be used to create column filters from the auxiliary tables
in a FITS file. For example, the following shell code will generate a good-time interval
(GTI) filter for X-ray data files that contain a standard GTI extension:

#!/bin/sh
sed '1,/---- .*/d
/^$/,$d' ⎪ awk 'tot>0{printf "⎪⎪"};{printf "time="$1":"$2; tot++}'

If this script is placed in a file called "mkgti", it can be used in a command such as:

fundisp foo.fits"[GTI]" ⎪ mkgti > gti.filter

The resulting filter file can then be used in various funtools programs:

funcnts foo.fits"[@gti.filter]" ...

to process only the events in the good-time intervals.

Use fundisp online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    Osu!
    Osu!
    Osu! is a simple rhythm game with a well
    thought out learning curve for players
    of all skill levels. One of the great
    aspects of Osu! is that it is
    community-dr...
    Download Osu!
  • 2
    LIBPNG: PNG reference library
    LIBPNG: PNG reference library
    Reference library for supporting the
    Portable Network Graphics (PNG) format.
    Audience: Developers. Programming
    Language: C. This is an application that
    can also...
    Download LIBPNG: PNG reference library
  • 3
    Metal detector based on  RP2040
    Metal detector based on RP2040
    Based on Raspberry Pi Pico board, this
    metal detector is included in pulse
    induction metal detectors category, with
    well known advantages and disadvantages.
    RP...
    Download Metal detector based on RP2040
  • 4
    PAC Manager
    PAC Manager
    PAC is a Perl/GTK replacement for
    SecureCRT/Putty/etc (linux
    ssh/telnet/... gui)... It provides a GUI
    to configure connections: users,
    passwords, EXPECT regula...
    Download PAC Manager
  • 5
    GeoServer
    GeoServer
    GeoServer is an open-source software
    server written in Java that allows users
    to share and edit geospatial data.
    Designed for interoperability, it
    publishes da...
    Download GeoServer
  • 6
    Firefly III
    Firefly III
    A free and open-source personal finance
    manager. Firefly III features a
    double-entry bookkeeping system. You can
    quickly enter and organize your
    transactions i...
    Download Firefly III
  • More »

Linux commands

Ad