EnglishFrenchSpanish

OnWorks favicon

t.rast.seriesgrass - Online in the Cloud

Run t.rast.seriesgrass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command t.rast.seriesgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


t.rast.series - Performs different aggregation algorithms from r.series on all or a
subset of raster maps in a space time raster dataset.

KEYWORDS


temporal, series, raster, time

SYNOPSIS


t.rast.series
t.rast.series --help
t.rast.series [-tn] input=name method=string [order=string[,string,...]]
[where=sql_query] output=name [--overwrite] [--help] [--verbose] [--quiet] [--ui]

Flags:
-t
Do not assign the space time raster dataset start and end time to the output map

-n
Propagate NULLs

--overwrite
Allow output files to overwrite existing files

--help
Print usage summary

--verbose
Verbose module output

--quiet
Quiet module output

--ui
Force launching GUI dialog

Parameters:
input=name [required]
Name of the input space time raster dataset

method=string [required]
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum, max_raster,
stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3,
perc90, quantile, skewness, kurtosis
Default: average

order=string[,string,...]
Sort the maps by category
Options: id, name, creator, mapset, creation_time, modification_time,
start_time, end_time, north, south, west, east, min, max
Default: start_time

where=sql_query
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS
framework
Example: start_time > ’2001-01-01 12:30:00’

output=name [required]
Name for output raster map

DESCRIPTION


t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of
the aggregation methods of r.series.

The input of this module is a single space time raster dataset, the output is a single
raster map layer. A subset of the input space time raster dataset can be selected using
the where option. The sorting of the raster map layer can be set using the order option.
Be aware that the order of the maps can significantly influence the result of the
aggregation (e.g.: slope). By default the maps are ordered by start_time.

EXAMPLE


Estimate average temperature for the whole time series
t.rast.series input=tempmean_monthly output=tempmean_general method=average
Estimate average temperature for all January maps in the time series, the so-called
climatology
t.rast.series input=tempmean_monthly \
method=average output=tempmean_january \
where="strftime(’%m’, start_time)=’01’"
# equivalently, we can use
t.rast.series input=tempmean_monthly \
output=tempmean_january method=average \
where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
# if we want also February and March averages
t.rast.series input=tempmean_monthly \
output=tempmean_february method=average \
where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
t.rast.series input=tempmean_monthly \
output=tempmean_march method=average \
where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
Generalizing a bit, we can estimate monthly climatologies for all months by means of
different methods
for i in `seq -w 1 12` ; do
for m in average stddev minimum maximum ; do
t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
where="strftime(’%m’, start_time)=’${i}’"
done
done

Use t.rast.seriesgrass online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

  • 1
    VirtualGL
    VirtualGL
    VirtualGL redirects 3D commands from a
    Unix/Linux OpenGL application onto a
    server-side GPU and converts the
    rendered 3D images into a video stream
    with which ...
    Download VirtualGL
  • 2
    libusb
    libusb
    Library to enable user space
    application programs to communicate with
    USB devices. Audience: Developers, End
    Users/Desktop. Programming Language: C.
    Categories...
    Download libusb
  • 3
    SWIG
    SWIG
    SWIG is a software development tool
    that connects programs written in C and
    C++ with a variety of high-level
    programming languages. SWIG is used with
    different...
    Download SWIG
  • 4
    WooCommerce Nextjs React Theme
    WooCommerce Nextjs React Theme
    React WooCommerce theme, built with
    Next JS, Webpack, Babel, Node, and
    Express, using GraphQL and Apollo
    Client. WooCommerce Store in React(
    contains: Products...
    Download WooCommerce Nextjs React Theme
  • 5
    archlabs_repo
    archlabs_repo
    Package repo for ArchLabs This is an
    application that can also be fetched
    from
    https://sourceforge.net/projects/archlabs-repo/.
    It has been hosted in OnWorks in...
    Download archlabs_repo
  • 6
    Zephyr Project
    Zephyr Project
    The Zephyr Project is a new generation
    real-time operating system (RTOS) that
    supports multiple hardware
    architectures. It is based on a
    small-footprint kernel...
    Download Zephyr Project
  • More »

Linux commands

Ad