This is the Windows app named BERTopic whose latest release can be downloaded as v0.14.1.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named BERTopic with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS:
BERTopic
DESCRIPTION:
BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, supervised, semi-supervised, manual, long-document, hierarchical, class-based, dynamic, and online topic modeling. It even supports visualizations similar to LDAvis! Corresponding medium posts can be found here, here and here. For a more detailed overview, you can read the paper or see a brief overview. After having trained our BERTopic model, we can iteratively go through hundreds of topics to get a good understanding of the topics that were extracted. However, that takes quite some time and lacks a global representation. Instead, we can visualize the topics that were generated in a way very similar to LDAvis. By default, the main steps for topic modeling with BERTopic are sentence-transformers, UMAP, HDBSCAN, and c-TF-IDF run in sequence.
Features
- It assumes some independence between these steps which makes BERTopic quite modular
- The main steps for topic modeling with BERTopic are sentence-transformers
- BERTopic has many functions
- Fit the model and predict documents
- Get all topic information
- Generate topic labels
- After having trained your BERTopic model, several are saved within your model
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/bertopic.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.