This is the Windows app named DCVGAN whose latest release can be downloaded as ICIP2019.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DCVGAN with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS:
DCVGAN
DESCRIPTION:
This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical information. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image. This model has three networks in the generator. In addition, the model has two discriminators.
Features
- Generators
- Discriminators
- Requires Python3.7, PyTorch, FFmpeg, OpenCV, and GraphViz
- Facial expression datasets
- Hand gesture datasets
- Train, sample, and evaluate
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/dcvgan.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.