This is the Windows app named DGRLVQ whose latest release can be downloaded as DGRLVQ.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DGRLVQ with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS:
DGRLVQ
DESCRIPTION:
Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different categories in between, then the other points act as a barrier and the prototype will not find its optimum position during training. Since the model complexity is not known in many cases, we avoid this problem by introducing a "Dynamic" version of LVQ.
Dynamic-GRLVQ (DGRLVQ), which adapts the model complexity to the given problem during training by adding or removing prototypes dynamically/realtime one by one for each category until satisfactory classification results are achieved.
Features
- Dynamic generalization relevance learning vector quantization
- DGRLVQ
- LVQ
- GRLVQ
- Machine Learning
- Clustering
- Artificial intelligence
- classification
- Pattern Recognition
Audience
Information Technology, Science/Research
User interface
Java Swing
Programming Language
Java
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/dgrlvq/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.