This is the Windows app named Finetuner whose latest release can be downloaded as v0.8.1.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Finetuner with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS:
Finetuner
DESCRIPTION:
Fine-tuning is an effective way to improve performance on neural search tasks. However, setting up and performing fine-tuning can be very time-consuming and resource-intensive. Jina AI’s Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud. With Finetuner, you can easily enhance the performance of pre-trained models, making them production-ready without extensive labeling or expensive hardware. Create high-quality embeddings for semantic search, visual similarity search, cross-modal text image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses. Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.
Features
- Better embeddings
- Low budget, high expectations
- Performance promise
- Simple yet powerful
- All-in-cloud
- Create high-quality embeddings for semantic search
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/finetuner.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.