InglesPransesEspanyol

OnWorks favicon

gmtmathgmt - Online sa Cloud

Patakbuhin ang gmtmathgmt sa OnWorks na libreng hosting provider sa Ubuntu Online, Fedora Online, Windows online emulator o MAC OS online emulator

Ito ang command na gmtmathgmt na maaaring patakbuhin sa OnWorks na libreng hosting provider gamit ang isa sa aming maramihang libreng online na workstation gaya ng Ubuntu Online, Fedora Online, Windows online emulator o MAC OS online emulator

PROGRAMA:

NAME


gmtmath - Reverse Polish Notation (RPN) calculator para sa mga talahanayan ng data

SINOPSIS


gmtmath [ t_f(t).d[+e][+s|w] ] [ kwelyo ] [ sarili ] [] [ n_col[/t_col] ] [ ] [ [f|l] ] [
t_min/t_max/t_inc[+]|tfile ] [ [antas] ] [ -b] [ -d] [ -f] [
-g] [ -h] [ -i] [ -o] [ -s] operan [ operan ]
OPERATOR [ operan ] OPERATOR ... = [ outfile ]

tandaan: Walang puwang ang pinapayagan sa pagitan ng flag ng opsyon at ng mga nauugnay na argumento.

DESCRIPTION


gmtmath gagawa ng mga operasyon tulad ng pagdaragdag, pagbabawas, pagpaparami, at paghahati sa isa o higit pa
table data file o constants gamit ang Reverse Polish Notation (RPN) syntax (hal,
Estilo ng calculator ng Hewlett-Packard). Ang mga arbitraryong kumplikadong expression ay maaaring samakatuwid
sinusuri; ang huling resulta ay nakasulat sa isang output file [o karaniwang output]. Data
Ang mga operasyon ay elemento-by-element, hindi matrix manipulations (maliban kung nabanggit). Ang ilan
ang mga operator ay nangangailangan lamang ng isang operand (tingnan sa ibaba). Kung walang data table ang ginagamit sa
expression pagkatapos ay mga pagpipilian -T, -N maaaring itakda (at opsyonal -bo upang ipahiwatig ang uri ng data
para sa mga binary table). Kung ang STDIN ay ibinigay, ang karaniwang input ay babasahin at ilalagay sa
stack na parang isang file na may nilalamang iyon ay ibinigay sa command line. Bilang default, lahat
ang mga column maliban sa column na "oras" ay pinapatakbo, ngunit maaari itong baguhin (tingnan -C).
Ang mga kumplikado o madalas na nagaganap na mga expression ay maaaring i-code bilang isang macro para magamit sa hinaharap o
naka-imbak at naaalala sa pamamagitan ng pinangalanang mga lokasyon ng memorya.

KAILANGAN MGA PANGANGATWIRANG


operan
If operan maaaring mabuksan bilang isang file na ito ay mababasa bilang isang ASCII (o binary, tingnan -bi)
file ng data ng talahanayan. Kung hindi isang file, ito ay binibigyang kahulugan bilang isang numerical constant o a
espesyal na simbolo (tingnan sa ibaba). Ang espesyal na argumentong STDIN ay nangangahulugan na si stdin ay
basahin at ilagay sa stack; Maaaring lumitaw ang STDIN nang higit sa isang beses kung kinakailangan.

outfile
Ang pangalan ng isang file ng data ng talahanayan na hahawak sa huling resulta. Kung hindi ibinigay noon
ang output ay ipinadala sa stdout.

OPSYONAL MGA PANGANGATWIRANG


-At_f(t).d[+e][+s|w]
Kinakailangan -N at bahagyang magpapasimula ng isang talahanayan na may mga halaga mula sa ibinigay na file
Na naglalaman ng t at f(t) lamang. Ang t ay inilalagay sa hanay t_col habang f(t) papasok
haligi n_col - 1 (tingnan -N). Kung ginamit sa mga operator na LSQFIT at SVDFIT magagawa mo
opsyonal na idagdag ang modifier +e na sa halip ay susuriin ang solusyon at
magsulat ng set ng data na may apat na column: t, f(t), ang modelong solusyon sa t, at ang
nalalabi sa t, ayon sa pagkakabanggit [Ang Default ay nagsusulat ng isang hanay na may mga koepisyent ng modelo].
Mag-aplay +w if t_f(t).d ay may ikatlong hanay na may mga timbang, o idugtong +s if t_f(t).d ay
pangatlong column na may 1-sigma. Sa dalawang kaso na iyon, nakita namin ang may timbang na solusyon.
Ang mga timbang (o sigma) ay ilalabas bilang huling column kung kailan +e ay may bisa.

-Ckwelyo Piliin ang mga column na paganahin hanggang sa susunod na paglitaw ng -C. Listahan
mga hanay na pinaghihiwalay ng mga kuwit; pinapayagan ang mga saklaw tulad ng 1,3-5,7. -C (walang argumento)
nire-reset ang default na pagkilos ng paggamit ng lahat ng column maliban sa column ng oras (tingnan -N). -Tinatayang
pinipili ang lahat ng column, kabilang ang column ng oras, habang -Cr binabaligtad (i-toggle) ang
kasalukuyang mga pagpipilian. Kailan -C sa bisa ay kinokontrol din nito kung aling mga column mula sa isang file
ilalagay sa stack.

-Esarili
Itinatakda ang pinakamababang eigenvalue na ginagamit ng mga operator na LSQFIT at SVDFIT [1e-7]. Mas maliit
Ang eigenvalues โ€‹โ€‹ay nakatakda sa zero at hindi isasaalang-alang sa solusyon.

-I Binabaliktad ang pagkakasunod-sunod ng row ng output mula sa pataas na oras hanggang sa pababang [pataas].

-Nn_col[/t_col]
Piliin ang bilang ng mga column at opsyonal ang numero ng column na naglalaman ng
variable na "oras" [0]. Ang mga column ay binibilangan simula sa 0 [2/0]. Kung ang mga input file ay
tinukoy noon -N ay magdaragdag ng anumang nawawalang column.

-Q Mabilis na mode para sa pagkalkula ng scalar. Shorthand para sa -Tinatayang -N1/0 -T0 / 0 / 1.

-S[f|l]
Iulat lamang ang una o huling row ng mga resulta [Default is all rows]. Ito ay
kapaki-pakinabang kung nakalkula mo ang isang istatistika (sabihin ang MODE) at nais lamang mag-ulat a
solong numero sa halip na maraming talaan na may magkaparehong halaga. Idugtong l upang makakuha ng mga
ang huling hanay at f upang makuha ang unang hilera lamang [Default].

-Tt_min/t_max/t_inc[+]|tfile
Kinakailangan kapag walang ibinigay na input file. Itinatakda ang t-coordinate ng una at
huling punto at ang equidistant sampling interval para sa column na "oras" (tingnan -N).
Mag-aplay + kung tinutukoy mo ang bilang ng mga katumbas na punto sa halip. Kung meron
ay walang time column (mga column lang ng data), give -T na walang mga argumento; ito rin ay nagpapahiwatig
-Tinatayang. Bilang kahalili, ibigay ang pangalan ng isang file na ang unang column ay naglalaman ng ninanais
t-coordinate na maaaring hindi regular.

-V[antas] (higit pa ...)
Piliin ang antas ng verbosity [c].

-bi[ncols][t] (higit pa ...)
Piliin ang native na binary input.

-bo[ncols][uri] (higit pa ...)
Piliin ang native na binary na output. [Ang default ay pareho sa input, ngunit tingnan -o]

-d[i|o]nodata (higit pa ...)
Palitan ang mga column ng input na katumbas nodata sa NaN at gawin ang reverse sa output.

-f[i|o]colinfo (higit pa ...)
Tukuyin ang mga uri ng data ng input at/o output column.

-g[a]x|y|d|X|Y|D|[co]z[+|-]puwang[o] (higit pa ...)
Tukuyin ang mga data gaps at line break.

-h[i|o][n][+c][+d][+rpangungusap][+rpamagat] (higit pa ...)
Laktawan o gumawa ng (mga) talaan ng header.

-ikwelyo[l][ssukatan][oginalaw][,...] (higit pa ...)
Pumili ng mga column ng input (0 ang unang column).

-okwelyo[,...] (higit pa ...)
Pumili ng mga column ng output (0 ang unang column).

-s[kwelyo][a|r] (higit pa ...)
Itakda ang pangangasiwa ng mga tala ng NaN.

-^ or m -
Mag-print ng maikling mensahe tungkol sa syntax ng command, pagkatapos ay lumabas (TANDAAN: sa Windows
gamitin lang -).

-+ or m +
Mag-print ng malawak na paggamit (tulong) na mensahe, kasama ang paliwanag ng anuman
opsyong tukoy sa module (ngunit hindi ang mga karaniwang opsyon sa GMT), pagkatapos ay lalabas.

-? or hindi argumento
Mag-print ng kumpletong mensahe ng paggamit (tulong), kasama ang paliwanag ng mga opsyon, pagkatapos
labasan.

--bersyon
I-print ang bersyon ng GMT at lumabas.

--show-datadir
I-print ang buong path sa GMT share directory at lumabas.

OPERATOR


Pumili sa mga sumusunod na 146 operator. Ang "args" ay ang bilang ng input at output
argumento.

.
โ”‚Operator โ”‚ args โ”‚ Ibinabalik โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ABS โ”‚ 1 1 โ”‚ abs (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ACOS โ”‚ 1 1 โ”‚ acos (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ACOSH โ”‚ 1 1 โ”‚ acosh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ACSC โ”‚ 1 1 โ”‚ acsc (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ACOT โ”‚ 1 1 โ”‚ acot (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ADD โ”‚ 2 1 โ”‚ A + B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚AT โ”‚ 2 1 โ”‚ B kung A == NaN, kung hindi A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ISANG SEC โ”‚ 1 1 โ”‚ asec (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TULAD NG SA โ”‚ 1 1 โ”‚ asin (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ASINH โ”‚ 1 1 โ”‚ asinh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Atan โ”‚ 1 1 โ”‚ atan (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ATAN2 โ”‚ 2 1 โ”‚ atan2 (A, B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ATANH โ”‚ 1 1 โ”‚ atanh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BCDF โ”‚ 3 1 โ”‚ Binomial na pinagsama-samang โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa p = A, n = B, at x โ”‚
โ”‚ โ”‚ โ”‚ = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BPDF โ”‚ 3 1 โ”‚ Binomial na posibilidad โ”‚
โ”‚ โ”‚ โ”‚ density function para sa p = โ”‚
โ”‚ โ”‚ โ”‚ A, n = B, at x = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BEI โ”‚ 1 1 โ”‚ bei (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BER โ”‚ 1 1 โ”‚ ber (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITAND โ”‚ 2 1 โ”‚ A & B (bitwise AT โ”‚
โ”‚ โ”‚ โ”‚ operator) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITLEFT โ”‚ 2 1 โ”‚ A << B (bitwise โ”‚
โ”‚ โ”‚ โ”‚ left-shift operator) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITNOT โ”‚ 1 1 โ”‚ ~A (bitwise HINDI โ”‚
โ”‚ โ”‚ โ”‚ operator, ibig sabihin, ibalik โ”‚
โ”‚ โ”‚ โ”‚ komplemento ng dalawa) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITOR โ”‚ 2 1 โ”‚ A | B (bitwise O โ”‚
โ”‚ โ”‚ โ”‚ operator) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITRIGHT โ”‚ 2 1 โ”‚ A >> B (bitwise โ”‚
โ”‚ โ”‚ โ”‚ right-shift operator) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PINAKABIT โ”‚ 2 1 โ”‚ 1 kung nakatakda ang bit B ng A, โ”‚
โ”‚ โ”‚ โ”‚ iba pa 0 (bitwise TEST โ”‚
โ”‚ โ”‚ โ”‚ operator) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚BITXOR โ”‚ 2 1 โ”‚ A ^ B (bitwise XOR โ”‚
โ”‚ โ”‚ โ”‚ operator) โ”‚
.

โ”‚CEIL โ”‚ 1 1 โ”‚ ceil (A) (pinakamaliit โ”‚
โ”‚ โ”‚ โ”‚ integer >= A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CHICRIT โ”‚ 2 1 โ”‚ Chi-squared distribution โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CHICDF โ”‚ 2 1 โ”‚ Chi-squared cumulative โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa chi2 = A at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CHIPDF โ”‚ 2 1 โ”‚ Chi-squared na posibilidad โ”‚
โ”‚ โ”‚ โ”‚ density function para sa โ”‚
โ”‚ โ”‚ โ”‚ chi2 = A at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚COL โ”‚ 1 1 โ”‚ Inilalagay ang column A sa โ”‚
โ”‚ โ”‚ โ”‚ stack โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚COMB โ”‚ 2 1 โ”‚ Mga kumbinasyon n_C_r, na may โ”‚
โ”‚ โ”‚ โ”‚ n = A at r = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CORCOEFF โ”‚ 2 1 โ”‚ Koepisyent ng ugnayan โ”‚
โ”‚ โ”‚ โ”‚ r(A, B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Cos โ”‚ 1 1 โ”‚ cos (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚COSD โ”‚ 1 1 โ”‚ cos (A) (A in degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚COSH โ”‚ 1 1 โ”‚ cosh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Higaan โ”‚ 1 1 โ”‚ higaan (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚COTD โ”‚ 1 1 โ”‚ higaan (A) (A sa degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CSC โ”‚ 1 1 โ”‚ csc (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚CSCD โ”‚ 1 1 โ”‚ csc (A) (A sa degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DDT โ”‚ 1 1 โ”‚ d(A)/dt Central 1st โ”‚
โ”‚ โ”‚ โ”‚ hinalaw โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚D2DT2 โ”‚ 1 1 โ”‚ d^2(A)/dt^2 2nd โ”‚
โ”‚ โ”‚ โ”‚ hinalaw โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚D2R โ”‚ 1 1 โ”‚ Kino-convert ang Degrees sa โ”‚
โ”‚ โ”‚ โ”‚ Radian โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DENAN โ”‚ 2 1 โ”‚ Palitan ang mga NaN sa A ng โ”‚
โ”‚ โ”‚ โ”‚ mga halaga mula sa B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DILOG โ”‚ 1 1 โ”‚ dilog (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DIFF โ”‚ 1 1 โ”‚ Pagkakaiba sa pagitan ng โ”‚
โ”‚ โ”‚ โ”‚ katabing elemento ng A โ”‚
โ”‚ โ”‚ โ”‚ (A[1]-A[0], A[2]-A[1], โ”‚
โ”‚ โ”‚ โ”‚ ..., 0) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DIV โ”‚ 2 1 โ”‚ A / B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚DUP โ”‚ 1 2 โ”‚ Lugar duplicate ng A sa โ”‚
โ”‚ โ”‚ โ”‚ ang stack โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ECDF โ”‚ 2 1 โ”‚ Exponential cumulative โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa x = A at lambda = B โ”‚
.

โ”‚ECRIT โ”‚ 2 1 โ”‚ Exponential distribution โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A at lambda = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚EPDF โ”‚ 2 1 โ”‚ Exponential probability โ”‚
โ”‚ โ”‚ โ”‚ density function para sa x = โ”‚
โ”‚ โ”‚ โ”‚ A at lambda = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MAGMANANA โ”‚ 1 1 โ”‚ Error function erf (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ERFC โ”‚ 1 1 โ”‚ Komplementaryong Error โ”‚
โ”‚ โ”‚ โ”‚ function na erfc (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ERFINV โ”‚ 1 1 โ”‚ Inverse error function โ”‚
โ”‚ โ”‚ โ”‚ ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚EQ โ”‚ 2 1 โ”‚ 1 kung A == B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚EXCH โ”‚ 2 2 โ”‚ Nagpapalitan ng A at B sa โ”‚
โ”‚ โ”‚ โ”‚ stack โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Exp โ”‚ 1 1 โ”‚ exp (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Katotohanan โ”‚ 1 1 โ”‚ A! (Isang factorial) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚FCDF โ”‚ 3 1 โ”‚ F pinagsama-samang โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa F = A, nu1 = B, at โ”‚
โ”‚ โ”‚ โ”‚ nu2 = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚FCRIT โ”‚ 3 1 โ”‚ F pamamahagi kritikal โ”‚
โ”‚ โ”‚ โ”‚ value para sa alpha = A, nu1 โ”‚
โ”‚ โ”‚ โ”‚ = B, at nu2 = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚FLIPUD โ”‚ 1 1 โ”‚ Baliktarin ang pagkakasunod-sunod ng bawat isa โ”‚
โ”‚ โ”‚ โ”‚ hanay โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SAlog โ”‚ 1 1 โ”‚ palapag (A) (pinakamahusay โ”‚
โ”‚ โ”‚ โ”‚ integer <= A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚FMOD โ”‚ 2 1 โ”‚ A % B (natitira pagkatapos ng โ”‚
โ”‚ โ”‚ โ”‚ pinutol na dibisyon) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚FPDF โ”‚ 3 1 โ”‚ F probability density โ”‚
โ”‚ โ”‚ โ”‚ function para sa F = A, nu1 โ”‚
โ”‚ โ”‚ โ”‚ = B, at nu2 = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚GE โ”‚ 2 1 โ”‚ 1 kung A >= B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚GT โ”‚ 2 1 โ”‚ 1 kung A > B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚HYPOT โ”‚ 2 1 โ”‚ hypot (A, B) = sqrt (A*A โ”‚
โ”‚ โ”‚ โ”‚ + B*B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚I0 โ”‚ 1 1 โ”‚ Binagong Bessel function โ”‚
โ”‚ โ”‚ โ”‚ ng A (1st kind, order 0) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚I1 โ”‚ 1 1 โ”‚ Binagong Bessel function โ”‚
โ”‚ โ”‚ โ”‚ ng A (1st kind, order 1) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KUNG HINDI โ”‚ 3 1 โ”‚ B kung A != 0, kung hindi C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚IN โ”‚ 2 1 โ”‚ Binagong Bessel function โ”‚
โ”‚ โ”‚ โ”‚ ng A (1st kind, order B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚INRANGE โ”‚ 3 1 โ”‚ 1 kung B <= A <= C, kung hindi 0 โ”‚
.

โ”‚Int โ”‚ 1 1 โ”‚ Isama ang A โ”‚ ayon sa bilang
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚INV โ”‚ 1 1 โ”‚ 1 / A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ISINITE โ”‚ 1 1 โ”‚ 1 kung ang A ay may hangganan, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ISNAN โ”‚ 1 1 โ”‚ 1 kung A == NaN, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚J0 โ”‚ 1 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (1st uri, order 0) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚J1 โ”‚ 1 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (1st uri, order 1) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚JN โ”‚ 2 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (1st uri, order B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚K0 โ”‚ 1 1 โ”‚ Binagong Kelvin function โ”‚
โ”‚ โ”‚ โ”‚ ng A (2nd uri, order 0) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚K1 โ”‚ 1 1 โ”‚ Binagong Bessel function โ”‚
โ”‚ โ”‚ โ”‚ ng A (2nd uri, order 1) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KN โ”‚ 2 1 โ”‚ Binagong Bessel function โ”‚
โ”‚ โ”‚ โ”‚ ng A (2nd uri, order B) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KEI โ”‚ 1 1 โ”‚ kei (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KER โ”‚ 1 1 โ”‚ ker (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KURT โ”‚ 1 1 โ”‚ Kurtosis ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LCDF โ”‚ 1 1 โ”‚ Laplace cumulative โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa z = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LCRIT โ”‚ 1 1 โ”‚ Pamamahagi ng Laplace โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LE โ”‚ 2 1 โ”‚ 1 kung A <= B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LMSSCL โ”‚ 1 1 โ”‚ pagtatantya ng sukat ng LMS (LMS โ”‚
โ”‚ โ”‚ โ”‚ STD) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Mag-log โ”‚ 1 1 โ”‚ log (A) (natural log) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LOG10 โ”‚ 1 1 โ”‚ log10 (A) (base 10) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LOG1P โ”‚ 1 1 โ”‚ log (1+A) (tumpak para sa โ”‚
โ”‚ โ”‚ โ”‚ maliit A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LOG2 โ”‚ 1 1 โ”‚ log2 (A) (base 2) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Ibaba โ”‚ 1 1 โ”‚ Ang pinakamababa (minimum) โ”‚
โ”‚ โ”‚ โ”‚ halaga ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LPDF โ”‚ 1 1 โ”‚ Laplace probabilidad โ”‚
โ”‚ โ”‚ โ”‚ density function para sa z = โ”‚
โ”‚ โ”‚ โ”‚ A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LRAND โ”‚ 2 1 โ”‚ Laplace random na ingay โ”‚
โ”‚ โ”‚ โ”‚ na may mean A at std. โ”‚
โ”‚ โ”‚ โ”‚ paglihis B โ”‚
.

โ”‚LSQFIT โ”‚ 1 0 โ”‚ Hayaang ang kasalukuyang talahanayan ay [A โ”‚
โ”‚ โ”‚ โ”‚ | b] ibalik ang hindi bababa sa โ”‚
โ”‚ โ”‚ โ”‚ mga parisukat na solusyon x = A \ โ”‚
โ”‚ โ”‚ โ”‚ b โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚LT โ”‚ 2 1 โ”‚ 1 kung A < B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Baliw โ”‚ 1 1 โ”‚ Median Absolute โ”‚
โ”‚ โ”‚ โ”‚ Paglihis (L1 STD) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MAX โ”‚ 2 1 โ”‚ Maximum ng A at B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MEAN โ”‚ 1 1 โ”‚ Mean value ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MED โ”‚ 1 1 โ”‚ Median na halaga ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MIN โ”‚ 2 1 โ”‚ Minimum ng A at B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MOD โ”‚ 2 1 โ”‚ A mod B (natitira pagkatapos ng โ”‚
โ”‚ โ”‚ โ”‚ floored division) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MODE โ”‚ 1 1 โ”‚ Halaga ng mode (Least Median โ”‚
โ”‚ โ”‚ โ”‚ ng mga Square) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚MUL โ”‚ 2 1 โ”‚ A * B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚NAN โ”‚ 2 1 โ”‚ NaN kung A == B, kung hindi A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚NEG โ”‚ 1 1 โ”‚ -A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚NEQ โ”‚ 2 1 โ”‚ 1 kung A != B, kung hindi 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Pamantayan โ”‚ 1 1 โ”‚ Normalize (A) kaya โ”‚
โ”‚ โ”‚ โ”‚ max(A)-min(A) = 1 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚HINDI โ”‚ 1 1 โ”‚ NaN kung A == NaN, 1 kung A โ”‚
โ”‚ โ”‚ โ”‚ == 0, iba pa 0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚NRAND โ”‚ 2 1 โ”‚ Normal, random na mga halaga โ”‚
โ”‚ โ”‚ โ”‚ na may mean A at std. โ”‚
โ”‚ โ”‚ โ”‚ paglihis B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚OR โ”‚ 2 1 โ”‚ NaN kung B == NaN, kung hindi A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PCDF โ”‚ 2 1 โ”‚ Poisson cumulative โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa x = A at lambda = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PERM โ”‚ 2 1 โ”‚ Mga Permutasyon n_P_r, na may โ”‚
โ”‚ โ”‚ โ”‚ n = A at r = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PPDF โ”‚ 2 1 โ”‚ Pamamahagi ng poisson โ”‚
โ”‚ โ”‚ โ”‚ P(x,lambda), na may x = A โ”‚
โ”‚ โ”‚ โ”‚ at lambda = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PLM โ”‚ 3 1 โ”‚ Kaugnay na Alamat โ”‚
โ”‚ โ”‚ โ”‚ polynomial P(A) degree B โ”‚
โ”‚ โ”‚ โ”‚ order C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PLMg โ”‚ 3 1 โ”‚ Normalized na nauugnay โ”‚
โ”‚ โ”‚ โ”‚ Legendre polynomial P(A) โ”‚
โ”‚ โ”‚ โ”‚ degree B order C โ”‚
โ”‚ โ”‚ โ”‚ (geophysical convention) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚POP โ”‚ 1 0 โ”‚ Tanggalin ang nangungunang elemento mula sa โ”‚
โ”‚ โ”‚ โ”‚ ang stack โ”‚
.

โ”‚POW โ”‚ 2 1 โ”‚ A ^ B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PQUANT โ”‚ 2 1 โ”‚ Ang B'th Quantile โ”‚
โ”‚ โ”‚ โ”‚ (0-100%) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PSI โ”‚ 1 1 โ”‚ Psi (o Digamma) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚PV โ”‚ 3 1 โ”‚ Legendre function na Pv(A) โ”‚
โ”‚ โ”‚ โ”‚ ng degree v = real(B) + โ”‚
โ”‚ โ”‚ โ”‚ imag(C) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚QV โ”‚ 3 1 โ”‚ Legendre function na Qv(A) โ”‚
โ”‚ โ”‚ โ”‚ ng degree v = real(B) + โ”‚
โ”‚ โ”‚ โ”‚ imag(C) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚R2 โ”‚ 2 1 โ”‚ R2 = A^2 + B^2 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚R2D โ”‚ 1 1 โ”‚ I-convert ang Radian sa โ”‚
โ”‚ โ”‚ โ”‚ Degrees โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TANONG โ”‚ 2 1 โ”‚ Mga pare-parehong random na halaga โ”‚
โ”‚ โ”‚ โ”‚ sa pagitan ng A at B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚RCDF โ”‚ 1 1 โ”‚ pinagsama-samang Rayleigh โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa z = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚RCRIT โ”‚ 1 1 โ”‚ Pamamahagi ng Rayleigh โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚RINT โ”‚ 1 1 โ”‚ rint (A) (bilog hanggang โ”‚
โ”‚ โ”‚ โ”‚ integral value na pinakamalapit โ”‚
โ”‚ โ”‚ โ”‚ hanggang A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚RPDF โ”‚ 1 1 โ”‚ Rayleigh probabilidad โ”‚
โ”‚ โ”‚ โ”‚ density function para sa z = โ”‚
โ”‚ โ”‚ โ”‚ A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ROLL โ”‚ 2 0 โ”‚ Paikot na inilipat ang tuktok โ”‚
โ”‚ โ”‚ โ”‚ Isang stack item ng isang โ”‚
โ”‚ โ”‚ โ”‚ halaga B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚NABULOK โ”‚ 2 1 โ”‚ I-rotate ang A sa pamamagitan ng โ”‚
โ”‚ โ”‚ โ”‚ (constant) shift B sa โ”‚
โ”‚ โ”‚ โ”‚ ang t-direksyon โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SEC โ”‚ 1 1 โ”‚ seg (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SECD โ”‚ 1 1 โ”‚ seg (A) (A sa degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Lagdaan โ”‚ 1 1 โ”‚ sign (+1 o -1) ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SIN โ”‚ 1 1 โ”‚ sin (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SINC โ”‚ 1 1 โ”‚ sinc (A) (sin โ”‚
โ”‚ โ”‚ โ”‚ (pi*A)/(pi*A)) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KASALANAN โ”‚ 1 1 โ”‚ kasalanan (A) (A sa degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚KASALANAN โ”‚ 1 1 โ”‚ sinh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SKEW โ”‚ 1 1 โ”‚ Pagkahilig ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SQR โ”‚ 1 1 โ”‚ A^2 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SQRT โ”‚ 1 1 โ”‚ sqrt (A) โ”‚
.

โ”‚Magkaroon ng mga std โ”‚ 1 1 โ”‚ Standard deviation ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚HAKBANG โ”‚ 1 1 โ”‚ Heaviside step function โ”‚
โ”‚ โ”‚ โ”‚ H(A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚HAKBANG โ”‚ 1 1 โ”‚ Heaviside step function โ”‚
โ”‚ โ”‚ โ”‚ H(tA) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Sub โ”‚ 2 1 โ”‚ A - B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚SUM โ”‚ 1 1 โ”‚ Pinagsama-samang kabuuan ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Magkulay-kayumanggi โ”‚ 1 1 โ”‚ tan (A) (A sa radians) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TANDA โ”‚ 1 1 โ”‚ tan (A) (A sa degrees) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TANH โ”‚ 1 1 โ”‚ tanh (A) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚URI โ”‚ 1 1 โ”‚ Mga timbang ng yunit โ”‚
โ”‚ โ”‚ โ”‚ cosine-tapered sa zero โ”‚
โ”‚ โ”‚ โ”‚ sa loob ng A ng mga dulong margin โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TN โ”‚ 2 1 โ”‚ Chebyshev polynomial โ”‚
โ”‚ โ”‚ โ”‚ Tn(-1
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TCRIT โ”‚ 2 1 โ”‚ Pamamahagi ng t ng mag-aaral โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TPDF โ”‚ 2 1 โ”‚ T probability ng mag-aaral โ”‚
โ”‚ โ”‚ โ”‚ density function para sa t = โ”‚
โ”‚ โ”‚ โ”‚ A, at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚TCDF โ”‚ 2 1 โ”‚ Ang pinagsama-samang t ng mag-aaral โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa t = A, at nu = B โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚UPPER โ”‚ 1 1 โ”‚ Ang pinakamataas (maximum) โ”‚
โ”‚ โ”‚ โ”‚ halaga ng A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚WCDF โ”‚ 3 1 โ”‚ pinagsama-samang Weibull โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa x = A, sukat = B, โ”‚
โ”‚ โ”‚ โ”‚ at hugis = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚WCRIT โ”‚ 3 1 โ”‚ Pamamahagi ng Weibull โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A, sukat = B, at โ”‚
โ”‚ โ”‚ โ”‚ hugis = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚WPDF โ”‚ 3 1 โ”‚ Densidad ng Weibull โ”‚
โ”‚ โ”‚ โ”‚ pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ P(x, sukat, hugis), na may x โ”‚
โ”‚ โ”‚ โ”‚ = A, sukat = B, at โ”‚
โ”‚ โ”‚ โ”‚ hugis = C โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚XOR โ”‚ 2 1 โ”‚ B kung A == NaN, kung hindi A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Y0 โ”‚ 1 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (2nd uri, order 0) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚Y1 โ”‚ 1 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (2nd uri, order 1) โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚YN โ”‚ 2 1 โ”‚ Bessel function ng A โ”‚
โ”‚ โ”‚ โ”‚ (ika-2 uri, order B) โ”‚
.

โ”‚ZCDF โ”‚ 1 1 โ”‚ Normal na pinagsama-samang โ”‚
โ”‚ โ”‚ โ”‚ function ng pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ para sa z = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ZPDF โ”‚ 1 1 โ”‚ Normal na posibilidad โ”‚
โ”‚ โ”‚ โ”‚ density function para sa z = โ”‚
โ”‚ โ”‚ โ”‚ A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ZCRIT โ”‚ 1 1 โ”‚ Normal na pamamahagi โ”‚
โ”‚ โ”‚ โ”‚ kritikal na halaga para sa alpha โ”‚
โ”‚ โ”‚ โ”‚ = A โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€คโ€ค
โ”‚ROOTS โ”‚ 2 1 โ”‚ Itinuturing ang col A bilang f(t) = 0 โ”‚
โ”‚ โ”‚ โ”‚ at ibinabalik ang mga ugat nito โ”‚
.

SYMBOL


Ang mga sumusunod na simbolo ay may espesyal na kahulugan:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€โ”€โ”€โ”€โ€โ€
โ”‚PI โ”‚ 3.1415926... โ”‚
.
โ”‚E โ”‚ 2.7182818... โ”‚
.
โ”‚EULER โ”‚ 0.5772156... โ”‚
.
โ”‚EPS_F โ”‚ 1.192092896e-07 (sgl. prec. eps) โ”‚
.
โ”‚EPS_D โ”‚ 2.2204460492503131e-16 (dbl. โ”‚
โ”‚ โ”‚ prec. eps) โ”‚
.
โ”‚TMIN โ”‚ Pinakamababang halaga ng t โ”‚
.
โ”‚TMAX โ”‚ Maximum t value โ”‚
.
โ”‚TRANGE โ”‚ Saklaw ng mga t value โ”‚
.
โ”‚TINC โ”‚ t dagdag โ”‚
.
โ”‚N โ”‚ Ang bilang ng mga tala โ”‚
.
โ”‚T โ”‚ Talahanayan na may t-coordinate โ”‚
.
โ”‚TNORM โ”‚ Talahanayan na may normalized โ”‚
โ”‚ โ”‚ t-coordinate โ”‚
.
โ”‚TROW โ”‚ Talahanayan na may mga row na numero 1, 2, โ”‚
โ”‚ โ”‚ ..., N-1 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ€˜

ASCII FORMAT PRECISION


Ang mga format ng output ng ASCII ng numerical data ay kinokontrol ng mga parameter sa iyong gmt.conf
file. Ang longitude at latitude ay naka-format ayon sa FORMAT_GEO_OUT, samantalang ang iba
ang mga halaga ay naka-format ayon sa FORMAT_FLOAT_OUT. Magkaroon ng kamalayan na ang format na may bisa
humantong sa pagkawala ng katumpakan sa output, na maaaring humantong sa iba't ibang mga problema sa ibaba ng agos. Kung
nalaman mong ang output ay hindi nakasulat nang may sapat na katumpakan, isaalang-alang ang paglipat sa binary
output (-bo kung available) o tumukoy ng higit pang mga decimal gamit ang FORMAT_FLOAT_OUT na setting.

NOTA ON OPERATOR


1. Ang mga operator PLM at PLMg kalkulahin ang nauugnay na Legendre polynomial ng degree L at
order M sa x na dapat matugunan ang -1 <= x <= +1 at 0 <= M <= L. x, L, at M ang tatlo
mga argumento na nauuna sa operator. PLM ay hindi na-normalize at kasama ang Condon-Shortley
yugto (-1)^M. PLMg ay na-normalize sa paraang pinakakaraniwang ginagamit sa geophysics. Ang
Maaaring idagdag ang CS phase sa pamamagitan ng paggamit -M bilang argumento. PLM aapaw sa mas mataas na antas,
samantalang PLMg ay stable hanggang ultra high degrees (hindi bababa sa 3000).

2. Mga file na may parehong mga pangalan tulad ng ilang mga operator, hal, ADD, Lagdaan, =, atbp. ay dapat
nakilala sa pamamagitan ng paglalagay ng kasalukuyang direktoryo (ibig sabihin, ./).

3. Ang limitasyon sa lalim ng stack ay hard-wired sa 100.

4. Lahat ng mga function na umaasa sa isang positibong radius (hal, Mag-log, KEI, atbp.) ay ipinasa ang
ganap na halaga ng kanilang argumento.

5. Ang DDT at D2DT2 gumagana lang ang mga function sa regular na spaced na data.

6. Ang lahat ng mga derivatives ay batay sa gitnang may hangganang pagkakaiba, na may natural na hangganan
kundisyon.

7. ROOTS dapat ang huling operator sa stack, sinusundan lamang ng =.

TINDAHAN, TUMALIKLAK AT I-clear ang


Maaari kang mag-imbak ng mga intermediate na kalkulasyon sa isang pinangalanang variable na maaari mong matandaan at ilagay
sa stack sa ibang pagkakataon. Ito ay kapaki-pakinabang kung kailangan mo ng access sa isang nakalkulang dami
maraming beses sa iyong pagpapahayag dahil ito ay paikliin ang pangkalahatang ekspresyon at mapabuti
pagiging madaling mabasa. Upang i-save ang isang resulta, ginagamit mo ang espesyal na operator Sto@etiketa, Kung saan etiketa ay ang
pangalang pipiliin mong ibigay ang dami. Upang maalala ang nakaimbak na resulta sa stack sa ibang pagkakataon
oras, gamitin ang [RCL]@etiketa, ibig sabihin, RCL ay opsyonal. Upang i-clear ang memorya na maaari mong gamitin CLR@etiketa. Tandaan
na Sto at CLR iwanan ang stack na hindi nagbabago.

8. Ang bitwise operator (BITAND, BITLEFT, BITNOT, BITOR, BITRIGHT, PINAKABIT, at BITXOR)
i-convert ang mga halaga ng dobleng katumpakan ng isang talahanayan sa hindi nalagdaan na 64-bit na ints upang maisagawa ang bitwise
mga operasyon. Dahil dito, ang pinakamalaking buong halaga ng integer na maaaring maimbak sa isang doble
ang halaga ng katumpakan ay 2^53 o 9,007,199,254,740,992. Ang anumang mas mataas na resulta ay itatakpan upang magkasya
sa mas mababang 54 bits. Kaya, ang mga bit operation ay epektibong limitado sa 54 bits. Lahat
Ang mga bitwise operator ay nagbabalik ng NaN kung bibigyan ng mga argumento ng NaN o mga bit-setting <= 0.

9. Bibigyang-kahulugan ng TAPER ang argumento nito bilang lapad sa parehong mga yunit gaya ng time-axis, ngunit
kung walang oras na ibinigay (ibig sabihin, mga plain data table) kung gayon ang lapad ay kukunin upang maibigay
bilang ng hanay.

MACROS


Maaaring i-save ng mga user ang kanilang mga paboritong kumbinasyon ng operator bilang mga macro sa pamamagitan ng file gmtmath.macros
sa kanilang kasalukuyan o direktoryo ng gumagamit. Ang file ay maaaring maglaman ng anumang bilang ng mga macro (isa bawat
rekord); Nilaktawan ang mga linya ng komento na nagsisimula sa #. Ang format para sa mga macro ay pangalan =
arg1 arg2 ... arg2 [ : puna] saan pangalan ay kung paano gagamitin ang macro. Kapag ganito
operator ay lilitaw sa command line pinapalitan lang namin ito ng nakalistang listahan ng argumento.
Walang macro ang maaaring tumawag sa isa pang macro. Bilang halimbawa, inaasahan ng sumusunod na macro na ang
Ang time-column ay naglalaman ng seafloor age sa Myr at kinukuwenta ang hinulaang kalahating espasyo
bathymetry:

LALIM = SQRT 350 MUL 2500 ADD NEG : paggamit: LALIM sa pagbabalik kalahating espasyo sa ilalim ng dagat kalaliman

Tandaan: Dahil ang mga heograpiko o mga constant ng oras ay maaaring nasa isang macro, kinakailangan iyon
ang opsyonal na flag ng komento (:) ay dapat na sundan ng isang puwang. Bilang isa pang halimbawa, ipinapakita namin ang a
macro GPSWEEK na tumutukoy kung saang GPS linggo nabibilang ang isang timestamp:

GPSWEEK = 1980-01-06T00:00:00 SUB 86400 DIV 7 DIV FLOOR : Linggo ng GPS na walang rollover

HALIMBAWA


Upang kunin ang square root ng nilalaman ng pangalawang column ng data na pini-pipe
gmtmath sa pamamagitan ng proseso1 at i-pipe ito sa pamamagitan ng ika-3 proseso, gamitin

proseso1 | gmt math STDIN SQRT = | proseso3

Upang kumuha ng log10 ng average ng 2 data file, gamitin

gmt math file1.d file2.d ADD 0.5 MUL LOG10 = file3.d

Dahil sa file samples.d, na nagtataglay ng seafloor age sa my at seafloor depth sa m, gamitin
ang lalim ng kaugnayan(sa m) = 2500 + 350 * sqrt (edad) upang i-print ang mga anomalya sa lalim:

gmt math samples.d T SQRT 350 MUL 2500 ADD SUB = | Lpr

Upang kunin ang average ng column 1 at 4-6 sa tatlong laki ng data set.1, sizes.2, at
laki.3, gamitin

gmt math -C1,4-6 sizes.1 sizes.2 ADD sizes.3 ADD 3 DIV = ave.d

Upang kunin ang 1-column data set age.d at kalkulahin ang modal value at italaga ito sa a
variable, subukan

gmt set mode_age = `gmt math -S -T ages.d MODE =`

Upang suriin ang dilog(x) function para sa mga coordinate na ibinigay sa file td:

gmt math -Tt.d T DILOG = dilog.d

Upang ipakita ang paggamit ng mga nakaimbak na variable, isaalang-alang ang kabuuan na ito ng unang 3 cosine
harmonics kung saan namin iniimbak at paulit-ulit na naaalala ang trigonometric argument (2*pi*T/360):

gmt math -T0/360/1 2 PI MUL 360 DIV T MUL STO@kT COS @kT 2 MUL COS ADD \
@kT 3 MUL COS ADD = harmonics.d

Upang gamitin ang gmtmath bilang isang RPN Hewlett-Packard calculator sa mga scalar (ibig sabihin, walang input file) at
kalkulahin ang mga arbitrary na expression, gamitin ang -Q opsyon. Bilang halimbawa, kakalkulahin natin ang
halaga ng Kei (((1 + 1.75)/2.2) + cos (60)) at iimbak ang resulta sa shell variable z:

set z = `gmt math -Q 1 1.75 ADD 2.2 DIV 60 COSD ADD KEI =`

Upang gamitin ang gmtmath bilang isang pangkalahatang hindi bababa sa mga parisukat equation solver, isipin na ang kasalukuyang talahanayan
ay ang augmented matrix [ A | b ] at gusto mo ang pinakamaliit na parisukat na solusyon x sa matrix
equation A * x = b. Ang namamahala LSQFIT ginagawa ito; trabaho mo na punan ang matrix
tama muna. Ang -A pagpipilian ay mapadali ito. Ipagpalagay na mayroon kang 2-column file ty.d
sa t at b(t) at gusto mong magkasya ang isang modelong y(t) = a + b*t + c*H(t-t0), kung saan ang H
ay ang Heaviside step function para sa isang naibigay na t0 = 1.55. Pagkatapos, kailangan mo ng 4-column na pinalaki
talahanayan na puno ng t sa hanay 1 at iyong naobserbahang y(t) sa hanay 3. Ang pagkalkula
nagiging

gmt math -N4/1 -Aty.d -C0 1 ADD -C2 1.55 STEPT ADD -Ca LSQFIT = solution.d

Tandaan na ginagamit namin ang -C opsyon upang piliin kung aling mga column ang aming ginagawa, pagkatapos ay gawing aktibo lahat
ang mga column na kailangan natin (narito ang lahat ng mga ito, kasama ang -Tinatayang) bago tumawag LSQFIT. Ang pangalawa at
pang-apat na column (col numbers 1 at 3) ay paunang nilagyan ng t at y(t), ayon sa pagkakabanggit, ang
ang ibang mga column ay zero. Kung mayroon ka nang pre-calculated table na may augmented
matris [ A | b ] sa isang file (sabihin ang lsqsys.d), simple lang ang solusyon sa least squares

gmt math -T lsqsys.d LSQFIT = solusyon.d

Dapat malaman ng mga gumagamit na kapag -C kinokontrol kung aling mga column ang magiging aktibo ang kontrol
umaabot din sa paglalagay ng mga column mula sa mga file. Ihambing ang iba't ibang resulta na nakuha ng
ang mga katulad na utos na ito:

echo 1 2 3 4 | gmt math STDIN -C3 1 ADD =
1 2 3 5

laban sa

echo 1 2 3 4 | gmt math -C3 STDIN 1 ADD =
0 0 0 5

Mga sanggunian


Abramowitz, M., at IA Stegun, 1964, Manwal of Matematika Pag-andar, Inilapat
Serye ng Matematika, vol. 55, Dover, New York.

Holmes, SA, at WE Featherstone, 2002, Isang pinag-isang diskarte sa Clenshaw summation
at ang recursive computation ng napakataas na antas at kaayusan na na-normalize ang nauugnay na Legendre
function. Pahayagan of Geodesy, 76, 279-299.

Press, WH, SA Teukolsky, WT Vetterling, at BP Flannery, 1992, Numerical
Mga Recipe, 2nd edition, Cambridge Univ., New York.

Spanier, J., at KB Oldman, 1987, An Atlas of Pag-andar, Hemisphere Publishing Corp.

Gamitin ang gmtmathgmt online gamit ang mga serbisyo ng onworks.net


Mga Libreng Server at Workstation

Mag-download ng Windows at Linux apps

Linux command

Ad