EnglishFrenchSpanish

OnWorks favicon

pkoptsvm - Online in the Cloud

Run pkoptsvm in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command pkoptsvm that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


pkoptsvm - program to optimize parameters for SVM classification

SYNOPSIS


pkoptsvm -t training [options] [advanced options]

DESCRIPTION


pkoptsvm The support vector machine depends on several parameters. Ideally, these
parameters should be optimized for each classification problem. In case of a radial basis
kernel function, two important parameters are {cost} and {gamma}. The utility pkoptsvm
can optimize these two parameters, based on an accuracy assessment (the Kappa value). If
an input test set (-i) is provided, it is used for the accuracy assessment. If not, the
accuracy assessment is based on a cross validation (-cv) of the training sample.

The optimization routine uses a grid search. The initial and final values of the
parameters can be set with -cc startvalue -cc endvalue and -g startvalue -g endvalue for
cost and gamma respectively. The search uses a multiplicative step for iterating the
parameters (set with the options -stepcc and -stepg). An often used approach is to define
a relatively large multiplicative step first (e.g 10) to obtain an initial estimate for
both parameters. The estimate can then be optimized by defining a smaller step (>1) with
constrained start and end values for the parameters cost and gamma.

OPTIONS


-t filename, --training filename
training vector file. A single vector file contains all training features (must be
set as: b0, b1, b2,...) for all classes (class numbers identified by label option).

-i filename, --input filename
input test vector file

-cc startvalue -cc endvalue, --ccost startvalue --ccost endvalue
min and max boundaries the parameter C of C-SVC, epsilon-SVR, and nu-SVR (optional:
initial value)

-g startvalue -g endvalue, --gamma startvalue --gamma endvalue
min max boundaries for gamma in kernel function (optional: initial value)

-step stepsize, --step stepsize
multiplicative step for ccost and gamma in GRID search

-v level, --verbose level
use 1 to output intermediate results for plotting

Advanced options

-tln layer, --tln layer
training layer name(s)

-label attribute, --label attribute
identifier for class label in training vector file. (default: label)

-bal size, --balance size
balance the input data to this number of samples for each class (default: 0)

-random, --random
in case of balance, randomize input data

-min number, --min number
if number of training pixels is less then min, do not take this class into account

-b band, --band band
band index (starting from 0, either use band option or use start to end)

-sband band, --startband band
start band sequence number

-eband band, --endband band
end band sequence number

-offset value, --offset value
offset value for each spectral band input features:
refl[band]=(DN[band]-offset[band])/scale[band]

-scale value, --scale value
scale value for each spectral band input features:
refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band
to -1.0 and 1.0)

-svmt type, --svmtype type
type of SVM (C_SVC, nu_SVC,one_class, epsilon_SVR, nu_SVR)

-kt type, --kerneltype type
type of kernel function (linear,polynomial,radial,sigmoid)

-kd value, --kd value
degree in kernel function

-c0 value, --coef0 value
coef0 in kernel function

-nu value, --nu value
the parameter nu of nu-SVC, one-class SVM, and nu-SVR

-eloss value, --eloss value
the epsilon in loss function of epsilon-SVR

-cache number, --cache number
cache memory size in MB (default: 100)

-etol value, --etol value
the tolerance of termination criterion (default: 0.001)

-shrink, --shrink
whether to use the shrinking heuristics

-cv value, --cv value
n-fold cross validation mode (default: 0)

-cf, --cf
use Overall Accuracy instead of kappa

-maxit number, --maxit number
maximum number of iterations

-tol value, --tolerance value
relative tolerance for stopping criterion (default: 0.0001)

-a value, --algorithm value
GRID, or any optimization algorithm from http://ab-
initio.mit.edu/wiki/index.php/NLopt_Algorithms

-c name, --class name
list of class names.

-r value, --reclass value
list of class values (use same order as in --class option).

24 January 2016 pkoptsvm(1)

Use pkoptsvm online using onworks.net services


Free Servers & Workstations

Download Windows & Linux apps

Linux commands

Ad